

To prove this we will need the following.

Lemma 3.9 *Let $f : U \rightarrow \mathbb{R}$ be a smooth function on an open set $U \subseteq \mathbb{R}^m$. For almost all $a = (a_1, a_2, \dots, a_m) \in \mathbb{R}^m$, the function*

$$f_a(x) = f(x) - \sum_{j=1}^m x_j a_j$$

is a Morse function.

Proof:

Consider the smooth function $g : \mathbb{R}^m \rightarrow \mathbb{R}^m$ given by

$$g(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_m}(x) \right).$$

Let $a \in \mathbb{R}^m$ be a regular value of g . By Sard's Theorem (see for instance Theorem II.6.2 of [32]), the set of regular values $a \in \mathbb{R}^m$ is dense in \mathbb{R}^m . Consider the function

$$f_a(x) = f(x) - \sum_{j=1}^m x_j a_j.$$

If $p \in \mathbb{R}^m$ is a critical point of f_a , then

$$(df_a)_p = g(p) - a = 0.$$

Since a is a regular value of g , dg_p is surjective, and hence it is invertible. The Hessian $H_p(f_a)$ is precisely dg_p , and thus p is non-degenerate.

□

Remark 3.10 We may choose the regular value a as close to $0 \in \mathbb{R}^n$ as we wish. Hence, the Morse function f_a may be made as close to f as we wish. For a global version of the preceding lemma see Theorem 5.27.

Proof of Theorem 3.8:

Let (x_1, \dots, x_r) be the coordinates of a point $x \in M \subseteq \mathbb{R}^r$. There is a neighborhood U of x on which some of the x_j 's, say $(x_{j_1}, \dots, x_{j_m})$, form local coordinates on M . Indeed, since $T_x M \hookrightarrow T_x \mathbb{R}^r$ is injective, its dual $T_x^* \mathbb{R}^r \rightarrow T_x^* M$ is surjective. Therefore, for some neighborhood U of x , $T^* M|_U$ is spanned by some linearly independent set $dx_{j_1}, \dots, dx_{j_m}$. Consequently, $(x_{j_1}, \dots, x_{j_m})$ are linearly independent and hence form a coordinate system on U .