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It’s clear that Mν
x (f) depends smoothly on x, and hence by Proposition

3.16, for every x ∈ R
n sufficiently close to 0 there exists a matrix Qx ∈

GLm−n(R) depending smoothly on x such that
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Therefore, for all x ∈ R
n sufficiently close to 0 we have
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Definition 3.52 Let f : M → R be a Morse-Bott function on a finite dimen-

sional smooth manifold M , and let C be a critical submanifold of f . For any

p ∈ C let λp denote the index of Hν
p (f). This integer is the dimension of the

unstable normal space ν−

p C, which is locally constant by the preceding lemma.

If C is connected, then λp is constant throughout C and we call λp = λC the

Morse-Bott index of the connected critical submanifold C.

The Morse-Bott inequalities

We will now show how to generalize the Morse inequalities from the previous

section. Recall that the Morse polynomial Mt(f) of a Morse function f :
M → R is

Mt(f) =
m
∑

k=0
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where νk is the number of critical points of index k. The Poincaré polynomial

of M is

Pt(M) =
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