

It's clear that $M_x^\nu(f)$ depends smoothly on x , and hence by Proposition 3.16, for every $x \in \mathbb{R}^n$ sufficiently close to 0 there exists a matrix $Q_x \in GL_{m-n}(\mathbb{R})$ depending smoothly on x such that

$${}^t Q_x \left(\frac{\partial^2 h}{\partial y_i \partial y_j} \Big|_{(x,0)} \right) Q_x = \left(\frac{\partial^2 h}{\partial y_i \partial y_j} \Big|_{(0,0)} \right).$$

Therefore, for all $x \in \mathbb{R}^n$ sufficiently close to 0 we have

$$\begin{aligned} (f \circ \tilde{\phi}^{-1})(x, Q_x y) &= q_x(Q_x y) \\ &= {}^t y {}^t Q_x \left(\frac{\partial^2 h}{\partial y_i \partial y_j} \Big|_{(x,0)} \right) Q_x y \\ &= {}^t y \left(\frac{\partial^2 h}{\partial y_i \partial y_j} \Big|_{(0,0)} \right) y \\ &= \sum_{j=1}^{m-n} \delta_j y_j^2 \end{aligned}$$

where $\delta_j = \frac{\partial^2 h}{\partial y_j^2} \Big|_{(0,0)} = -1$ for all $j = 1, \dots, k$ and $\delta_j = \frac{\partial^2 h}{\partial y_j^2} \Big|_{(0,0)} = +1$ for all $j = k+1, \dots, m$.

□

Definition 3.52 Let $f : M \rightarrow \mathbb{R}$ be a Morse-Bott function on a finite dimensional smooth manifold M , and let C be a critical submanifold of f . For any $p \in C$ let λ_p denote the index of $H_p^\nu(f)$. This integer is the dimension of the unstable normal space $\nu_p^- C$, which is locally constant by the preceding lemma. If C is connected, then λ_p is constant throughout C and we call $\lambda_p = \lambda_C$ the **Morse-Bott index** of the connected critical submanifold C .

The Morse-Bott inequalities

We will now show how to generalize the Morse inequalities from the previous section. Recall that the Morse polynomial $M_t(f)$ of a Morse function $f : M \rightarrow \mathbb{R}$ is

$$M_t(f) = \sum_{k=0}^m \nu_k t^k$$

where ν_k is the number of critical points of index k . The Poincaré polynomial of M is

$$P_t(M) = \sum_{k=0}^m b_k t^k$$