

statement of the Morse-Bott inequalities in Theorem 3.53 may not hold when the unstable normal bundles are not orientable. The correct statement of the Morse-Bott inequalities in the case where the unstable normal bundles are not orientable uses homology with local coefficients (see Section 1 of [8]).

Example 3.59 Consider the Morse-Bott function on T^2 described in the previous example. Pull this back to a function on $T^2 \times [0, 1]$. Now glue the ends together by a reflection on T^2 which preserves the Morse-Bott function but reflects each critical circle. We then get a Morse-Bott function on the mapping torus of a reflection on T^2 , whose critical submanifolds are Klein bottles, which fails the Morse-Bott inequalities as stated in Theorem 3.53.

A perturbation technique for Morse-Bott functions

We end this section by giving a useful construction relating Morse-Bott functions and Morse functions. We will see in Theorem 5.27 that given any smooth function f on a smooth manifold there exists a Morse function g arbitrarily close to f . However, the proof of Theorem 5.27 is not constructive since it relies on Sard's Theorem. The following useful construction produces an explicit Morse function arbitrarily close to a given Morse-Bott function [14].

Let T_j be a small tubular neighborhood around each connected component $C_j \subseteq \text{Cr}(f)$ for all $j = 1, \dots, l$. Pick a positive Morse function f_j on each C_j for all $j = 1, \dots, l$, and extend f_j to a function on T_j by making f_j constant in the direction normal to C_j . Let ρ_j be a bump function which is equal to 1 near C_j and equal to 0 outside of T_j . Choose $\varepsilon > 0$ and define

$$g = f + \varepsilon \left(\sum_{j=1}^l \rho_j f_j \right).$$

For appropriate bump functions ρ_j and ε small enough, g is a Morse function close to f , and the critical points of g are exactly the critical points of f_j for all $j = 1, \dots, l$. It is easy to see that if $p \in C_j$ is a critical point of $f_j : C_j \rightarrow \mathbb{R}$ of index λ_p^j , then p is a critical point of g of index

$$\lambda_p^g = \lambda_j + \lambda_p^j$$

where λ_j is the Morse-Bott index of C_j . For more details about this construction see Section 5 of [16].

Problems

1. Show that in local coordinates around a critical point $p \in M$ the matrix for the Hessian $H_p(f)$ is given by the matrix $M_p(f)$ of second partial derivatives.