A PROOF OF THE MORSE-BOTT LEMMA

AUGUSTIN BANYAGA AND DaviD E. HURTUBISE

ABSTRACT. It is often said that the Morse-Bott Lemma can be viewed as a “param-
eterized” Morse Lemma, and its proof should follow from the differentiability of the
methods used to prove the Morse Lemma. The goal of this expository paper is to
fill in the details. We present Palais’ proof of the Morse Lemma using Moser’s path
method, which yields the necessary differentiability.

1. Introduction and Preliminaries

The goal of this expository paper is to give a complete proof of the Morse-Bott
Lemma: a classical result, but one for which we do not know a complete proof in the
literature. Usually authors just say that the Morse-Bott Lemma is a parameterized
version of the Morse Lemma, and its proof follows from the differentiability of the
methods used to prove the Morse Lemma [1], [2], [3]. This is actually true, but
there are further subtleties involved. We take the opportunity in this exposition to
give Palais’ proof of the Morse Lemma using Moser’s path method, which yields
the differentiability needed to prove the Morse-Bott Lemma.

Let f: M — R be a smooth function on a smooth manifold M. A critical point
of fis a point p € M at which the differential df, : T,M — Ty, R = R is zero.
Here T, M denotes the tangent space to M at p.

For each critical point p of f, there is a bilinear symmetric form H,(f) on T, M,
called the Hessian of f at p, defined as follows:

Hy(f)(V,W) =V - (W - f)(p)

where VW € T, M and W is an extension of W into a vector field defined near P
[6]. If the Hessian H,(f) is a non-degenerate bilinear form, then we say that the
critical point p is a non-degenerate critical point. The dimension of the subspace
on which H,(f) is negative definite is called the index of p (sometimes called “the
Morse index”).

A C? function f : M — R is called a Morse function if all of its critical points
are non-degenerate.
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Morse Lemma [6], [7]. Let p € M be a nondegenerate critical point of a smooth
function f : M — R. There exists a smooth chart ¢ : U — R™, where U is an open
neighborhood of p with ¢(p) = 0, such that if ¢(z) = (z1,...,zm) for x € U, then

(foo ™ )@1,...,am)=f(p) —ai — a3 — - — 2} + 27 + T yp + -+ 20,

where k is the index of p.

It is easy to see that non-degenerate critical points are isolated. Hence, if f is a
Morse function, then the set Crit(f) of critical points is a 0 - dimensional manifold.

We now consider a function f : M — R whose critical set is a disjoint union
L ; C; of connected smooth submanifolds of dimensions d; > 0, called critical sub-
manifolds. Pick a Riemannian metric on M and use it to split T, M|¢, as

T.M

C; — T*Cz (&) V*Ci

where T,C; is the tangent bundle of C; and v,.C; is the normal bundle of C;. Let
peC;, VeT,C;,, WeT,M, and let Hy(f) be the Hessian of f at p. We have

Hy(fY (VW) =V, (W-f)=0

since V,, € T),C; and any extension W of W to a vector field satisfies df (W)|¢, = 0.
Therefore, the Hessian H,(f) induces a bilinear symmetric form H,(f) on v,C; =
T,M/T,C;.

A smooth function f : M — R is called a Morse-Bott function if Crit(f) = ||, Cs
is a disjoint union of connected smooth submanifolds and for each C; and p € C;
the Hessian H,(f) is non-degenerate [2], [3].

One says that the Hessian is non-degenerate in the direction normal to the critical
submanifolds.

Morse-Bott Lemma. Let f : M — R be a Morse-Bott function, C' a connected
component of Crit(f) of dimension n, and p € C. Then there exists an open
neighborhood U of p and a smooth chart ¢ : U — R™ x R™™" where m = dim(M),
such that:

a) ¢(p) =0
b) p(UNC) = {(z,y) e R" x R™ "y =0} and
o) (fod ™ )a,y)=fC) =i —v3— —vr+ Ui+ T U n

where k < m —n is the index of H,(f) and f(C) is the common value of f on C.

This lemma implies that the index k of H,(f) is locally constant, so it is the
same for all points p € C. We say that C' is a critical manifold of index k.

We need first to recall the following Taylor formulas of order one and two:
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Scholium. Let f : U — R be a C* function on a convex neighborhood U of
0 € R™. If f(0) = 0, then there exist C* functions g; with g;(0) = %(O) such
that:

m
flxe,. .. xm) = ingi(xl, e D)
i=1

It f(0) = %(0) = 0 for i = 1,...,m then there exist C*™° functions h;; with
hij(0) = %(0) such that

flxe,. ... xm) = inxjhij(xl, oy Ty) = "2 S
ij

where x is the column vector transpose of 'z = (x1,...,xm), and S, = (s;5(x)) is
the symmetric matrix with entries

1
sij (1) = 5 (hij(x) + hji(@)).
Proof:
We have:

m

d B o S
- (t:c)—;xl 8331-@:61)'

Hence, setting

1
0
gi(xl,...,xm):/ af(tx) dt
0 0T

we observe that
_of

9i(0) = (0) dt (0),

and we get:

This is a Taylor formula of order one.
Applying the preceeding fact again to g;(x1,...,Zm), and assuming g;(0) = 0,
we have

m
gi(fﬂl, cee ;xm) = ijhij(xl, - ,xm)
j=1

where the hy; are C° functions with f;;(0) = 2% (0) = z24(0).

= e
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We have
—xJSx

The expression f(x) = ‘xS,z is a Taylor formula of order two.

2. Palais’ proof of the Morse Lemma [4], [9]

By replacing f by f — f(p) and by choosing a suitable coordinate chart on M we
may assume that the function f is defined on a convex neighborhood Uj of 0 € R™
where f(0) =0, df(0) = 0, and the matrix of the Hessian at 0 € R™,

0 f
M, =A= 0
is a diagonal matrix with the first £ diagonal entries equal to —1 and the rest equal
to +1.
The matrix A induces a function A : R™ — R given by
Alz) =tezAz =< Az, z >= Z(ij?
j=1

where §; = %’ = 41 for all j = 1,...,m. We want to prove that there are

0
neighborhoods U and U’ of 0 with U C Uy and a diffeomorphism ¢ : U — U’ such
that R
fop=A4A (1)

The idea of Moser’s path method [8] is to interpolate f and A by a path such as,
fr=A+1(f - 4), (2)
and to look for a smooth family ¢; of diffeomorphisms such that
frowe=fo=A. (3)
Then ¢ = ¢ will satisfy fop = A.

We get ¢, as the solution of the differential equations

Py =) pole) =2
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where the smooth family & is the tangent along the curves ¢t — @ ().

Taking the partial derivative with respect to ¢ of both sides of (3) gives

(frowr+ (& fi)owe)(z) =0 (4)
for all 2 € U where f; denotes %. Thus,
(fe+& f)y) =0 (5)
for all y € U'. But f; = f — A, and therefore (5) becomes
dfi(&) =g (6)

where g:fl—f.

Since g(0) = A(0) — f(0) =0 —0 = 0 and dg(0) = dA(0) —df(0) =0—0 =0,
the Scholium gives:
9(x) =< Gz, x>

where G is a symmetric matrix depending smoothly on z.

The proof of the Scholium can be modified as follows to show that
dfe(2)(&) =< By&e,x > (7)
where B is an m x m matrix with entries

1 82 ft

0 83518%

(B;)ij = (sx) ds.

We have,

< (df(sm) (&) (Z@ O )
0 () A,
th Ox; (8@ 5z) ds™ "

— ¢ t
— ; x&] 8331-8%- (sx).

Hence, since df;(0) = 0, we get
td
dfe(x) (&) = dfi(z) (&) — dfe(0)(&) = / 25 We(52)(&) ds

/ Z @a axJ sz) ds
= szft Batc ij
.7
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and formula (7) follows.
Now observe that by (2)

i [ Ph

is a diagonal matrix whose (7, j)-th entry is

0 f
205+t <@ —25J—> =(2-1)J;
7o
forall j = 1,...,m. Hence, B} is non-degenerate for all 0 < ¢ < 1, and there exists

a neighborhood U of 0 € R™ such that B! is also non-degenerate for all t. For
x € U, we have a unique solution &; of

< Bl¢,x>=< Gua,x >

This solution & = (BL)~ G,z of (5, 6), defined on U depends smoothly on both
x and t. Clearly, &(0) = 0. Hence, by shrinking U we can integrate & and get a
smooth family of diffeomorphisms ¢, from a smaller neighborhood U of 0 to another
neighborhood U’ of 0 which satisfies f; o oy = fo = A.

O

3. Proof of the Morse-Bott Lemma

We will need the following lemma which is an important ingredient in Hirsch’s
proof of the Morse Lemmal[5]:

Hirsch’s Lemma. Let A = diag(ai,as, ... ,an) be a diagonal matrix with di-
agonal entries a; = £1 for all j = 1,...,m. Then there is a neighborhood U
of A in the vector space of symmetric matrices (= R™™+1)/2) and a C>° map
P :U — GL,,(R) such that: P(A) = Iyxm and for every S € U, if P(S) = Q,
then 'QSQ = A.

Proof:

We proceed by induction on the dimension m. First, suppose m = 1 and A = (a)
with @ = £1. If § = (s) is any 1 x 1 matrix sufficiently close to A, then s will be
non-zero with the same sign as a, and we define

P(S)=Q = (ﬁ) .

Now let A = diag(a1,as,...,an) where a; = £1 for all j = 1,...,m, and
assume for the purpose of induction that there is a neighborhood U; of A; =
diag(az, ..., anm) in the vector space of (m — 1) x (m — 1) symmetric matrices such
that for every S; € Uy there exists a smooth map Py : Uy — GL,,—1(R) such that
Pi(A1) = Itm—1)x(m—1) and 'Q151Q1 = A1 where Q1 = Py(S1) € GLp—1(R).
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Let S = (s;;) be a symmetric m x m symmetric matrix near enough to A =
diag(ai, az,...,am) so that si; is non-zero and has the same sign as a;. The
symmetric matrix S determines a symmetric bilinear form B : R™ x R™ — R given
by B(z,y) = tzSy for all 2,y € R™. Following the first step in the Gram-Schmidt

orthogonalization process, we change the standard basis ey, . .. , e;,, of R™ to a basis
Wy, . .. , Wy, Where
€1
w1 =
VIl

and

_ _ S1j

w; = €5 — B(wl,wl)B(wl, ej) w1 = €5 — 5—61
11

for all j = 2,...,m. The corresponding change of basis matrix C € GL,,(R) is
given by

1 _S12 ..., _Sim
/ls11| s11 s11
C= 0
: I
0

where I denotes the (m — 1) x (m — 1) identity matrix. The new basis satisfies
B(wq,w;) =0 for all j =2,...,m, and thus it is easy to see that

ap 0 - 0

tfcsc =
S

0

where S; is an (m — 1) x (m — 1) symmetric matrix depending smoothly on S. If S
is sufficiently close to A, then S; € U, and we can apply the induction hypothesis
to conclude that there exists some Q1 € GL,,—1(R) depending smoothly on S; such
that ‘{Q15:1Q1 = Ay = diag(aa, . .. ,an). Define P(S) = Q = CR where

: @1

0

Then we have ‘QSQ = A where P(S) = Q € GL,,(R) depends smoothly on S and
P(A) = Luxm.

O

Let C € M be an n-dimensional connected critical submanifold of f. By replac-
ing f with f — ¢, where c is the common value of f on the critical submanifold C,
we may assume that f(p) = 0 for all p € C. Let p € C, and choose a coordinate
chart ¢ : U — R™ x R™™ ™ defined on an open neighborhood U of p such that
¢(p) = (0,0) and ¢(UNC) =R"™ x {0}. By composing this chart with a diffeomor-
phism of R™ x R™~" that is constant in the first component, we may assume that
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the matrix of the Hessian in the direction normal to R™ x {0} at (0,0) € R® x R™™"
for the local expression h(x,y) = (f o ¢~ 1)(z,y):
9?h

Mg (f) = ( Ayi0y; (o,o>>

is a diagonal matrix with the first £ diagonal entries equal to —1 and the rest equal
to +1.
The assumption that f is Morse-Bott means that for every x € R™ the quadratic

form
9%h
4(y) ="y ( ) y
(2,0)

dy; 0y,
is non-degenerate. If we fix z € R™ and apply Palais’ construction in the proof of
the Morse Lemma to the quadratic form g, : R™™" — R, then we get a family v,
of diffeomorphisms depending smoothly on z between neighborhoods of 0 € R™™™
such that

Wz, 92(y)) = ga(y)-
Therefore, ¢~ (z,y) = ¢~ (z, 1, (y)) : R x R™™™ — M is a chart such that

(foo™ ) (z,y) = a:(y).
It’s clear that MY (f) depends smoothly on z, and hence by Hirsch’s Lemma,

for every x € R™ sufficiently close to 0 there exists a matrix Q, € GLy—n(R)
depending smoothly on x such that
(070)> '

5?h 9%h
(x,0) Yi0Yj

0y; 9y,
Therefore, for all x € R™ sufficiently close to 0 we have

(fo o M)z, Quy) = ¢2(Quy)

*h
="y'Qa Quy
dyi0y; (x,0)

_ty 0%h y
0y;0y; (0,0)

m—n
=2 %y
j=1

where §; = g%;((o,()) = —lforallj=1,...,kand §; = g%;((o,()) = +1 for all
i=k+1,...,m.
O
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