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Abstract. It is often said that the Morse-Bott Lemma can be viewed as a “param-
eterized” Morse Lemma, and its proof should follow from the differentiability of the

methods used to prove the Morse Lemma. The goal of this expository paper is to
fill in the details. We present Palais’ proof of the Morse Lemma using Moser’s path

method, which yields the necessary differentiability.

1. Introduction and Preliminaries

The goal of this expository paper is to give a complete proof of the Morse-Bott
Lemma: a classical result, but one for which we do not know a complete proof in the
literature. Usually authors just say that the Morse-Bott Lemma is a parameterized
version of the Morse Lemma, and its proof follows from the differentiability of the
methods used to prove the Morse Lemma [1], [2], [3]. This is actually true, but
there are further subtleties involved. We take the opportunity in this exposition to
give Palais’ proof of the Morse Lemma using Moser’s path method, which yields
the differentiability needed to prove the Morse-Bott Lemma.

Let f : M → R be a smooth function on a smooth manifold M . A critical point
of f is a point p ∈ M at which the differential dfp : TpM → Tf(p)R ≈ R is zero.
Here TpM denotes the tangent space to M at p.

For each critical point p of f , there is a bilinear symmetric form Hp(f) on TpM ,
called the Hessian of f at p, defined as follows:

Hp(f)(V,W ) = V · (W̃ · f)(p)

where V,W ∈ TpM and W̃ is an extension of W into a vector field defined near p
[6]. If the Hessian Hp(f) is a non-degenerate bilinear form, then we say that the
critical point p is a non-degenerate critical point. The dimension of the subspace
on which Hp(f) is negative definite is called the index of p (sometimes called “the
Morse index”).

A C2 function f : M → R is called a Morse function if all of its critical points
are non-degenerate.
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Morse Lemma [6], [7]. Let p ∈M be a nondegenerate critical point of a smooth
function f : M → R. There exists a smooth chart φ : U → Rm, where U is an open
neighborhood of p with φ(p) = 0, such that if φ(x) = (x1, . . . , xm) for x ∈ U , then

(f ◦ φ−1)(x1, . . . , xm) = f(p) − x2
1 − x2

2 − · · · − x2
k + x2

k+1 + x2
k+2 + · · ·+ x2

m

where k is the index of p.

It is easy to see that non-degenerate critical points are isolated. Hence, if f is a
Morse function, then the set Crit(f) of critical points is a 0 - dimensional manifold.

We now consider a function f : M → R whose critical set is a disjoint union⊔
iCi of connected smooth submanifolds of dimensions di ≥ 0, called critical sub-

manifolds. Pick a Riemannian metric on M and use it to split T∗M |Ci as

T∗M |Ci = T∗Ci ⊕ ν∗Ci

where T∗Ci is the tangent bundle of Ci and ν∗Ci is the normal bundle of Ci. Let
p ∈ Ci, V ∈ TpCi, W ∈ TpM , and let Hp(f) be the Hessian of f at p. We have

Hp(f)(V,W ) = Vp · (W̃ · f) = 0

since Vp ∈ TpCi and any extension W̃ of W to a vector field satisfies df(W̃ )|Ci = 0.
Therefore, the Hessian Hp(f) induces a bilinear symmetric form Hp(f) on νpCi ≈
TpM/TpCi.

A smooth function f : M → R is called a Morse-Bott function if Crit(f) =
⊔

iCi

is a disjoint union of connected smooth submanifolds and for each Ci and p ∈ Ci

the Hessian Hp(f) is non-degenerate [2], [3].

One says that the Hessian is non-degenerate in the direction normal to the critical
submanifolds.

Morse-Bott Lemma. Let f : M → R be a Morse-Bott function, C a connected
component of Crit(f) of dimension n, and p ∈ C. Then there exists an open
neighborhood U of p and a smooth chart φ : U → Rn×Rm−n, where m = dim(M ),
such that:

a) φ(p) = 0
b) φ(U ∩C) = {(x, y) ∈ Rn × Rm−n|y = 0} and

c) (f ◦ φ−1)(x, y) = f(C) − y2
1 − y2

2 − · · · − y2
k + y2

k+1 + · · ·+ y2
m−n

where k ≤ m − n is the index of Hp(f) and f(C) is the common value of f on C.

This lemma implies that the index k of Hp(f) is locally constant, so it is the
same for all points p ∈ C. We say that C is a critical manifold of index k.

We need first to recall the following Taylor formulas of order one and two:
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Scholium. Let f : U → R be a C∞ function on a convex neighborhood U of
0 ∈ Rm. If f(0) = 0, then there exist C∞ functions gi with gi(0) = ∂f

∂xi
(0) such

that:

f(x1, . . . , xm) =
m∑

i=1

xigi(x1, . . . , xm).

If f(0) = ∂f
∂xi

(0) = 0 for i = 1, . . . ,m then there exist C∞ functions hij with

hij(0) = ∂2f
∂xi∂xj

(0) such that

f(x1, . . . , xm) =
∑

ij

xixjhij(x1, . . . , xm) = txSxx

where x is the column vector transpose of tx = (x1, . . . , xm), and Sx = (sij(x)) is
the symmetric matrix with entries

sij(x) =
1
2
(hij(x) + hji(x)).

Proof:

We have:
d

dt
f(tx) =

m∑

i=1

xi
∂f

∂xi
(txi).

Hence, setting

gi(x1, . . . , xm) =
∫ 1

0

∂f

∂xi
(tx) dt

we observe that

gi(0) =
∫ 1

0

∂f

∂xi
(0) dt =

∂f

∂xi
(0),

and we get:

f(x) = f(x) − f(0) =
∫ 1

0

d

dt
f(tx) dt

=
∫ 1

0

m∑

i=1

xi
∂f

∂xi
(tx) dt

=
m∑

i=1

xigi(x1, . . . , xm).

This is a Taylor formula of order one.
Applying the preceeding fact again to gi(x1, . . . , xm), and assuming gi(0) = 0,

we have

gi(x1, . . . , xm) =
m∑

j=1

xjhij(x1, . . . , xm)

where the hij are C∞ functions with hij(0) = ∂gi

∂xj
(0) = ∂2f

∂xi∂xj
(0).
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We have

f(x1, . . . , xm) =
m∑

i=1

xi

m∑

j=1

xjhij(x1, . . . , xm)

=
∑

i,j

xixjhij(x1, . . . , xm)

= txSxx.

The expression f(x) = txSxx is a Taylor formula of order two.
�

2. Palais’ proof of the Morse Lemma [4], [9]

By replacing f by f −f(p) and by choosing a suitable coordinate chart on M we
may assume that the function f is defined on a convex neighborhood U0 of 0 ∈ Rm

where f(0) = 0, df(0) = 0, and the matrix of the Hessian at 0 ∈ Rm,

M0(f) = A =
(

∂2f

∂xi∂xj
(0)
)
,

is a diagonal matrix with the first k diagonal entries equal to −1 and the rest equal
to +1.

The matrix A induces a function Ã : Rm → R given by

Ã(x) = txAx =< Ax, x >=
m∑

j=1

δjx
2
j

where δj = ∂2f
∂x2

j

∣∣∣
0

= ±1 for all j = 1, . . . ,m. We want to prove that there are

neighborhoods U and U ′ of 0 with U ⊆ U0 and a diffeomorphism ϕ : U → U ′ such
that

f ◦ ϕ = Ã (1)

The idea of Moser’s path method [8] is to interpolate f and Ã by a path such as,

ft = Ã+ t(f − Ã), (2)

and to look for a smooth family ϕt of diffeomorphisms such that

ft ◦ ϕt = f0 = Ã. (3)

Then ϕ = ϕ1 will satisfy f ◦ ϕ = Ã.

We get ϕt as the solution of the differential equations

dϕt

dt
(x) = ξt(ϕt(x)); ϕ0(x) = x
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where the smooth family ξt is the tangent along the curves t 7→ ϕt(x).

Taking the partial derivative with respect to t of both sides of (3) gives

(ḟt ◦ ϕt + (ξt · ft) ◦ ϕt)(x) = 0 (4)

for all x ∈ U where ḟt denotes ∂ft

∂t
. Thus,

(ḟt + ξt · ft)(y) = 0 (5)

for all y ∈ U ′. But ḟt = f − Ã, and therefore (5) becomes

dft(ξt) = g (6)

where g = Ã− f .

Since g(0) = Ã(0) − f(0) = 0 − 0 = 0 and dg(0) = dÃ(0) − df(0) = 0 − 0 = 0,
the Scholium gives:

g(x) =< Gxx, x >

where Gx is a symmetric matrix depending smoothly on x.

The proof of the Scholium can be modified as follows to show that

dft(x)(ξt) =< Bt
xξt, x > (7)

where Bt
x is an m×m matrix with entries

(Bt
x)ij =

∫ 1

0

∂2ft

∂xi∂xj
(sx) ds.

We have,

d

ds
(dft(sx)(ξt)) =

d

ds


∑

j

ξj
t

∂ft

∂xj
(sx)




=
∑

i,j

ξj
t

∂

∂xi

(
∂ft

∂xj
(sx)

)
· d
ds
sxi

=
∑

i,j

xiξ
j
t

∂2ft

∂xi∂xj
(sx).

Hence, since dft(0) = 0, we get

dft(x)(ξt) = dft(x)(ξt) − dft(0)(ξt) =
∫ 1

0

d

ds
dft(sx)(ξt) ds

=
∫ 1

0

∑

i,j

xiξ
j
t

∂2ft

∂xi∂xj
(sx) ds

=
∑

i,j

xiξ
j
t (Bt

x)ij
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and formula (7) follows.
Now observe that by (2)

Bt
0 =

(
∂2ft

∂xi∂xj
(0)
)

is a diagonal matrix whose (j, j)-th entry is

2δj + t

(
∂2f

∂x2
j

∣∣∣∣∣
0

− 2δj

)
= (2 − t)δj

for all j = 1, . . . ,m. Hence, Bt
0 is non-degenerate for all 0 ≤ t ≤ 1, and there exists

a neighborhood Ũ of 0 ∈ Rm such that Bt
x is also non-degenerate for all t. For

x ∈ Ũ , we have a unique solution ξt of

< Bt
xξt, x >=< Gxx, x >

This solution ξt = (Bt
x)−1Gxx of (5, 6), defined on Ũ depends smoothly on both

x and t. Clearly, ξt(0) = 0. Hence, by shrinking Ũ we can integrate ξt and get a
smooth family of diffeomorphisms ϕt from a smaller neighborhood U of 0 to another
neighborhood U ′ of 0 which satisfies ft ◦ ϕt = f0 = Ã.

�

3. Proof of the Morse-Bott Lemma

We will need the following lemma which is an important ingredient in Hirsch’s
proof of the Morse Lemma[5]:

Hirsch’s Lemma. Let A = diag(a1, a2, . . . , am) be a diagonal matrix with di-
agonal entries aj = ±1 for all j = 1, . . . ,m. Then there is a neighborhood U

of A in the vector space of symmetric matrices (≈ Rm(m+1)/2) and a C∞ map
P : U → GLm(R) such that: P (A) = Im×m and for every S ∈ U , if P (S) = Q,
then tQSQ = A.

Proof:
We proceed by induction on the dimension m. First, suppose m = 1 and A = (a)

with a = ±1. If S = (s) is any 1 × 1 matrix sufficiently close to A, then s will be
non-zero with the same sign as a, and we define

P (S) = Q =

(
1√
|s|

)
.

Now let A = diag(a1, a2, . . . , am) where aj = ±1 for all j = 1, . . . ,m, and
assume for the purpose of induction that there is a neighborhood U1 of A1 =
diag(a2, . . . , am) in the vector space of (m− 1)× (m− 1) symmetric matrices such
that for every S1 ∈ U1 there exists a smooth map P1 : U1 → GLm−1(R) such that
P1(A1) = I(m−1)×(m−1) and tQ1S1Q1 = A1 where Q1 = P1(S1) ∈ GLm−1(R).
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Let S = (sij) be a symmetric m × m symmetric matrix near enough to A =
diag(a1, a2, . . . , am) so that s11 is non-zero and has the same sign as a1. The
symmetric matrix S determines a symmetric bilinear form B : Rm ×Rm → R given
by B(x, y) = txSy for all x, y ∈ Rm. Following the first step in the Gram-Schmidt
orthogonalization process, we change the standard basis e1, . . . , em of Rm to a basis
w1, . . . , wm where

w1 =
e1√
|s11|

and
wj = ej −B(w1, w1)B(w1, ej) w1 = ej −

s1j

s11
e1

for all j = 2, . . . ,m. The corresponding change of basis matrix C ∈ GLm(R) is
given by

C =




1√
|s11|

− s12
s11

· · · − s1m

s11

0
... I
0




where I denotes the (m − 1) × (m − 1) identity matrix. The new basis satisfies
B(w1, wj) = 0 for all j = 2, . . . ,m, and thus it is easy to see that

tCSC =




a1 0 · · · 0
0
... S1

0




where S1 is an (m− 1)× (m− 1) symmetric matrix depending smoothly on S. If S
is sufficiently close to A, then S1 ∈ U1, and we can apply the induction hypothesis
to conclude that there exists some Q1 ∈ GLm−1(R) depending smoothly on S1 such
that tQ1S1Q1 = A1 = diag(a2, . . . , am). Define P (S) = Q = CR where

R =




1 0 · · · 0
0
... Q1

0




Then we have tQSQ = A where P (S) = Q ∈ GLm(R) depends smoothly on S and
P (A) = Im×m.

�

Let C ⊆ M be an n-dimensional connected critical submanifold of f . By replac-
ing f with f − c, where c is the common value of f on the critical submanifold C,
we may assume that f(p) = 0 for all p ∈ C. Let p ∈ C, and choose a coordinate
chart φ : U → Rn × Rm−n defined on an open neighborhood U of p such that
φ(p) = (0, 0) and φ(U ∩C) = Rn × {0}. By composing this chart with a diffeomor-
phism of Rn × Rm−n that is constant in the first component, we may assume that
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the matrix of the Hessian in the direction normal to Rn×{0} at (0, 0) ∈ Rn×Rm−n

for the local expression h(x, y) = (f ◦ φ−1)(x, y):

Mν
0 (f) =

(
∂2h

∂yi∂yj

∣∣∣∣
(0,0)

)

is a diagonal matrix with the first k diagonal entries equal to −1 and the rest equal
to +1.

The assumption that f is Morse-Bott means that for every x ∈ Rn the quadratic
form

qx(y) = ty

(
∂2h

∂yi∂yj

∣∣∣∣
(x,0)

)
y

is non-degenerate. If we fix x ∈ Rn and apply Palais’ construction in the proof of
the Morse Lemma to the quadratic form qx : Rm−n → R, then we get a family ψx

of diffeomorphisms depending smoothly on x between neighborhoods of 0 ∈ Rm−n

such that
h(x, ψx(y)) = qx(y).

Therefore, φ̃−1(x, y) = φ−1(x, ψx(y)) : Rn × Rm−n →M is a chart such that

(f ◦ φ̃−1)(x, y) = qx(y).

It’s clear that Mν
x (f) depends smoothly on x, and hence by Hirsch’s Lemma,

for every x ∈ Rn sufficiently close to 0 there exists a matrix Qx ∈ GLm−n(R)
depending smoothly on x such that

tQx

(
∂2h

∂yi∂yj

∣∣∣∣
(x,0)

)
Qx =

(
∂2h

∂yi∂yj

∣∣∣∣
(0,0)

)
.

Therefore, for all x ∈ Rn sufficiently close to 0 we have

(f ◦ φ̃−1)(x,Qxy) = qx(Qxy)

= tytQx

(
∂2h

∂yi∂yj

∣∣∣∣
(x,0)

)
Qxy

= ty

(
∂2h

∂yi∂yj

∣∣∣∣
(0,0)

)
y

=
m−n∑

j=1

δjy
2
j

where δj = ∂2h
∂y2

j
((0, 0) = −1 for all j = 1, . . . , k and δj = ∂2h

∂y2
j
((0, 0) = +1 for all

j = k + 1, . . . ,m.
�
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