CASCADES AND PERTURBED MORSE-BOTT FUNCTIONS
AUGUSTIN BANYAGA AND DAVID E. HURTUBISE

ABSTRACT. Let f : M — R be a Morse-Bott function on a finite dimensional
closed smooth manifold M. Choosing an appropriate Riemannian metric on M
and Morse-Smale functions f; : C; — R on the critical submanifolds C, one can
construct a Morse chain complex whose boundary operator is defined by counting
cascades [16]. Similar data, which also includes a parameter £ > 0 that scales the
Morse-Smale functions f;, can be used to define an explicit perturbation of the
Morse-Bott function f to a Morse-Smale function h. : M — R [3] [6]. In this paper
we show that the Morse-Smale-Witten chain complex of h. is the same as the Morse
chain complex defined using cascades for any € > 0 sufficiently small. That is, the
two chain complexes have the same generators, and their boundary operators are
the same (up to a choice of sign). Thus, the Morse Homology Theorem implies
that the homology of the cascade chain complex of f: M — R is isomorphic to the
singular homology H.(M;Z).

1. INTRODUCTION

Let f: M — R be a Morse-Bott function on a finite dimensional closed smooth
Riemannian manifold (M, g) with connected critical submanifolds C; for j =1,...,1.
There are at least three approaches to computing the homology of M using moduli
spaces of gradient flow lines:

(1) Perturb f : M — R to a Morse-Smale function and use the Morse-Smale-
Witten chain complex, whose boundary operator is defined using moduli
spaces of gradient flow lines of the perturbed function (see for instance [4],
[29], and the references therein).

(2) Introduce Morse functions f; : C; — R on the critical submanifolds Cy, ..., C;
and use a Morse chain complex whose boundary operator is defined using
moduli spaces of cascades [16].

(3) Use the Morse-Bott-Smale multicomplex, where the homomorphisms in the
multicomplex are defined using fibered products of moduli spaces of gradient
flow lines of the Morse-Bott function f: M — R [7].

A fourth approach might involve using the filtration determined by the Morse-Bott
function f : M — R to define a spectral sequence, but the differentials in the spectral
sequence determined by the filtration are not defined using moduli spaces of gradient
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flow lines (see [7] and [19]). In addition, there are approaches to computing the coho-
mology/homology of M from a Morse-Bott function using differential forms and/or
currents [3] [12] [22], but we will not discuss differential forms or currents in this

paper.

The main goal of this paper is to show that for a finite dimensional closed smooth
manifold M the first two approaches are essentially the same. That is, the auxiliary
Morse functions f; : C; — R on the critical submanifolds C; for j = 1,...,[ required
to define the cascade chain complex and a parameter € > 0 determine an explicit
perturbation of the Morse-Bott function f : M — R to a Morse function h. : M — R
[3] [6]. Moreover, under certain transversality assumptions the Morse-Smale-Witten
chain complex of h. : M — R has the same generators and the same boundary
operator as the cascade chain complex (up to a choice of sign).

We now describe the cascade chain complex for a Morse-Bott function. To the best
of our knowledge, moduli spaces of cascades were first introduced within the context
of symplectic Floer homology by Frauenfelder [16], and cascade-like objects were
simultaneously introduced within the context of contact homology by Bourgeois [11].
Moduli spaces of cascades have since been used in the contexts of contact homology
and gauge theory by several authors [9] [10] [13] [30]. Our approach to constructing
moduli spaces of cascades and their compactifications is given in Sections 3 and
4 for a function f : M — R on a finite dimensional closed smooth Riemannian
manifold (M, g) that satisfies the Morse-Bott-Smale transversality condition. The
moduli spaces of cascades are constructed using finite dimensional fibered products
similar to those found in [7], and the compactifications of the moduli spaces are
described in terms of the Hausdorft topology.

Cascades. Let f: M — R be a Morse-Bott function on a finite dimensional closed
smooth Riemannian manifold (M, g) with connected critical submanifolds Cy, ..., C}.
Choose Morse-Smale functions f; : C; — R on the critical submanifolds for all
Jj=1,...,1, and define the total index of a critical point of f; to be its Morse index
on C; plus the Morse-Bott index of the critical submanifold C;. Roughly speaking,
a cascade between two critical points is a concatenation of some gradient flow lines
of the function f and pieces of the gradient flow lines of the functions f; on the crit-
ical submanifolds. Choosing appropriate Riemannian metrics on M and the critical
submanifolds Cj it is shown in the appendix to [16] that the moduli space of cas-
cades M¢(q, p) between two critical points ¢ and p is a smooth manifold of dimension
Ag—Ap—1, where A, and ), denote the total indices of g and p respectively. Moreover,
M¢(q, p) has a compactification consisting of broken flow lines with cascades between
q and p.

Since the moduli space of cascades M€(q,p) has properties similar to those of a
moduli space of gradient flow lines of a Morse-Smale function, it is natural to define a
chain complex analogous to the Morse-Smale-Witten chain complex but using moduli
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spaces of cascades in place of moduli spaces of gradient flow lines. Thus, we define the
k™ chain group C£(f) to be the free abelian group generated by the critical points of
total index k of the Morse-Smale functions f; for all j =1,...,{. In the appendix to
[16] a boundary operator 9¢ is defined by counting the number of cascades between
critical points of relative index one mod 2, and a continuation theorem is stated that
implies that the homology of the chain complex (C¢(f) ® Zg, 0¢) is isomorphic to the
singular homology H.(M;Zs). In Section 5 of this paper we show that it is possible
to define the boundary operator 0¢ over Z by counting the elements of M¢(q, p) with
sign when A\, — )\, = 1, and we prove that the homology of the resulting chain complex
(C<(f), 0%) is isomorphic to the singular homology H,(M;Z).

Perturbing the Morse-Bott function. The Morse-Smale functions f; : C; — R
chosen to define the chain complex (C¢(f),0¢) can also be used to define an explicit
perturbation of the Morse-Bott function f : M — R to a Morse-Smale function
he : M — R. This perturbation technique was used in [3] in relation to a de Rham
version of Morse-Bott cohomology. It was also used in [6] to give a dynamical systems
approach to the proof of the Morse-Bott inequalities with somewhat different orienta-
tion assumptions than the classical “half-space” method using the Thom Isomorphism
Theorem (see [8], Appendix C of [15], and Section 2.6 of [25]).

To define the Morse-Smale function h. : M — R near f choose “small” tubular
neighborhoods Tj of each of the critical submanifolds C; for all j = 1,...,] and
extend the Morse-Smale functions f; to the tubular neighborhoods 7); by making them
constant in the direction normal to C;. Choose bump functions p; on the tubular
neighborhoods Tj for all j = 1,...,[ that are equal to one in an open neighborhood
of Cj, constant in the direction parallel to C;, and equal to zero outside of T;. The

function
!
he=f+e (Z m)

j=1
is a Morse function near f for any sufficiently small € > 0, and the critical set of h. is
the union of the critical points of the functions f; : C; — R for j =1,...,[. In fact,
the total index A, of a critical point ¢ is the same as the Morse index of ¢ viewed as
a critical point of h. : M — R.

Correspondence. If we choose the Riemannian metric g on M so that h. : M — R
satisfies the Morse-Smale transversality condition with respect to g, then the moduli
space of gradient flow lines of h. between two critical points ¢ and p is a smooth
manifold with dim Mj_(¢,p) = A\, — A, — 1. We show in Section 3 that if f :
M — R satisfies the Morse-Bott-Smale transversality condition and we choose the
Morse functions f; on the critical submanifolds so that some additional transversality
conditions are satisfied, then the moduli space of cascades M¢(q, p) is also a smooth
manifold of dimension \; — A, — 1.
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In Section 5 we prove that when the dimension of these moduli spaces is zero they
have the same number of elements.

Theorem 1 (Correspondence of Moduli Spaces). Let p,q € Cr(h.) with \;, — X\, = 1.
For any sufficiently small € > 0 there is a bijection between unparameterized cascades
and unparameterized gradient flow lines of the Morse-Smale function h. : M — R
between q and p,

M (q,p) < Mu(q,p).

Choosing orientations on the unstable manifolds of the Morse-Smale function h. :
M — R associates a sign £1 to each component of M,_(q,p) when A\, — A\, = 1, and
thus we can use the correspondence theorem for moduli spaces to transport the signs
to the components of M¢(q, p). This allows us to define the boundary operator in the
cascade chain complex over Z, and we have the following as an immediate corollary.

Corollary 2 (Correspondence of Chain Complexes). Fore > 0 sufficiently small, the
Morse-Smale- Witten chain complex (Cy(he),0s) associated to the perturbation

l
he=f+e <ijfj>
Jj=1

of a Morse-Bott function f : M — R is the same as the cascade chain complex
(C(f),0%). That is, the chain groups of both complexes have the same generators
and their boundary operators are the same (up to a choice of sign).

This corollary, together with the Morse Homology Theorem, implies immediately that
the homology of the chain complex (C¢(f), 0¢) is isomorphic to the singular homology
H.(M; 7).

Outline of the paper. In Section 2 we recall some basic definitions and facts about
the Morse-Smale-Witten chain complex. In Section 3 we give a detailed construction
of the smooth moduli space of cascades M¢(q,p) under the assumption that f :
M — R satisfies the Morse-Bott-Smale transversality condition with respect to the
metric g on M. Our construction requires that the Morse functions f; : C; —
R satisfy the Morse-Smale transversality condition with respect to the restriction
of the Riemannian metric g to the critical submanifolds for all j = 1,...,] and
that all the unstable and stable manifolds on the critical submanifolds are transverse
to certain beginning and endpoint maps (Definition 11). Lemma 12 shows that it
is always possible to choose the auxiliary Morse functions f; : M — R so that
these transversality conditions are satisfied. Theorem 13 shows that under the above
assumptions M¢(g, p) is a smooth manifold of dimension A\, — A\, — 1 that is stratified
by smooth manifolds with corners.

In Section 4 we study the compactness properties of M(q,p). We show using
the Hausdorff metric that M¢(q, p) can be compactified using broken flow lines with
cascades, which implies that M¢(q, p) is compact when A\, — A\, = 1. In Section 5



CASCADES AND PERTURBED MORSE-BOTT FUNCTIONS 5

we give a detailed construction of the perturbation h. : M — R, and we prove that
it is possible to choose a single Riemannian metric ¢ so that h. : M — R satisfies
the Morse-Smale transversality condition with respect to g for all € > 0 sufficiently
small (Lemma 22). We also prove that as ¢ — 0 a sequence of gradient flow lines of
h. between two critical points ¢ and p must have a subsequence that converges to a
broken flow line with cascades from ¢ to p (Lemma 24).

The correspondence theorem for moduli spaces (Theorem 25) is proved in Section
5 using recent results from geometric singular perturbation theory. In particular,
our proof uses the Exchange Lemma for fast-slow systems [20] [27] [28] which says
(roughly) that a manifold M, that is transverse to the stable manifold of a normally
hyperbolic locally invariant submanifold C' will have subsets that flow forward in time
under the full fast-slow system to be near subsets of the unstable manifold of C. The
correspondence theorem for the Morse-Smale-Witten chain complex of h. : M — R
and the cascade chain complex (Corollary 28) follows as an immediate corollary to
the correspondence theorem for moduli spaces.

2. THE MORSE-SMALE-WITTEN CHAIN COMPLEX

In this section we briefly recall the construction of the Morse-Smale-Witten chain
complex and the Morse Homology Theorem. For more details see [4].

Let Cr(f) = {p € M|df, = 0} denote the set of critical points of a smooth function
f: M — R on a smooth m-dimensional manifold M. A critical point p € Cr(f) is
said to be nondegenerate if and only if the Hessian H,(f) is nondegenerate. The
index )\, of a nondegenerate critical point p is the dimension of the subspace of 1, M
where H,(f) is negative definite. If all the critical points of f are non-degenerate,
then f is called a Morse function.

If f: M — RisaMorse function on a finite dimensional compact smooth Riemann-
ian manifold (M, g), then the stable manifold W} (p) and the unstable manifold
Wi (p) of a critical point p € Cr(f) are defined to be

Wip) = {reM|limg(z)=p)
Wip) = {ze M| lim ¢i(z) = p}
where ¢, is the 1-parameter group of diffeomorphisms generated by minus the gradient
vector field, i.e. =V f. The index of p coincides with the dimension of W (p). The

Stable /Unstable Manifold Theorem for a Morse Function says that the tangent space
at p splits as

T,M =T;M & T'M

where the Hessian is positive definite on T5M “r pW3(p) and negative definite on
TyM “r pWi(p). Moreover, the stable and unstable manifolds of p are surjective
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images of smooth embeddings
E*:T:M — Wip)SM
E":T'M — Wf(p)C M.

Hence, W} (p) is a smoothly embedded open disk of dimension m — A,, and W¢(p) is
a smoothly embedded open disk of dimension A,.

If the stable and unstable manifolds of a Morse function f : M — R all intersect
transversally, then the function f is called Morse-Smale. For any metric g on M the
set of smooth Morse-Smale functions is dense by the Kupka-Smale Theorem (Theorem
6.6 and Remark 6.7 of [4]), and for a given Morse function f : M — R one can choose
a Riemannian metric on M so that f is Morse-Smale with respect to the chosen
metric (Theorem 2.20 of [1]). Moreover, if f is Morse-Smale and p,q € Cr(f) then
Wi(q,p) = Wi(q) " Wi(p) is an embedded submanifold of M of dimension A\, — Ay,
and when A\, — A, = 1 the number of gradient flow lines from ¢ to p is finite (Corollary
6.29 of [4]).

If we choose an orientation for each of the unstable manifolds of f, then there is
an induced orientation on the normal bundles of the stable manifolds. Thus, we can
define an integer associated to any two critical points p and ¢ of relative index one
by counting the number of gradient flow lines from ¢ to p with signs determined by
the orientations. This integer is denoted by ns(q, p) = #M(q,p), where M(q,p) =
W¢(q,p)/R is the moduli space of gradient flow lines of f from ¢ to p. The Morse-
Smale-Witten chain complex is defined to be the chain complex (C.(f), 0.) where
Ck(f) is the free abelian group generated by the critical points ¢ of index k and the
boundary operator dg : Cx(f) — Cr_1(f) is given by

@) = D npapp
pE€CTK_1(f)
where Cr_1(f) denotes the set of critical points with index k — 1.

Theorem 3 (Morse Homology Theorem). The pair (Ci(f),0s) is a chain complez,
and the homology of (C.(f),0s) is isomorphic to the singular homology H.(M;Z).

Note that the Morse Homology Theorem implies that the homology of (C.(f), 0.) is
independent of the Morse-Smale function f : M — R, the Riemannian metric, and
the chosen orientations.

3. MORSE-BOTT FUNCTIONS AND CASCADES

Let f: M — R be a smooth function whose critical set Cr(f) contains a subman-
ifold C' of positive dimension. Pick a Riemannian metric on M and use it to split
T.M|c as

T.M|c =T.C dv.C



CASCADES AND PERTURBED MORSE-BOTT FUNCTIONS 7

where T,C' is the tangent space of C' and v,C' is the normal bundle of C. Let p € C,
VeT,C,W eT,M, and let H,(f) be the Hessian of f at p. We have

Hy(f)(V,W)=V,-(W-f)=0

since V, € T,C" and any extension of W to a vector field W satisfies df (W)|c = 0.
Therefore, the Hessian H,(f) induces a symmetric bilinear form H)(f) on v,C.

Definition 4. A smooth function f : M — R on a smooth manifold M is called a
Morse-Bott function if and only if the set of critical points Cr(f) is a disjoint
union of connected submanifolds and for each connected submanifold C' C Cr(f) the
bilinear form H}(f) is non-degenerate for all p € C.

Often one says that the Hessian of a Morse-Bott function f is non-degenerate in the
direction normal to the critical submanifolds.

For a proof of the following lemma see Section 3.5 of [4] or [5].

Lemma 5 (Morse-Bott Lemma). Let f : M — R be a Morse-Bott function and
C C Cr(f) a connected component. For any p € C there is a local chart of M around
p and a local splitting v,.C' = v, C ® v} C, identifying a point x € M in its domain to
(u,v,w) where u € C, v € v;C, w € v} C, such that within this chart f assumes the
form

fl@) = flu,v,w) = f(C) = [o]* + |w]*.

Definition 6. Let f : M — R be a Morse-Bott function on a finite dimensional
smooth manifold M, and let C' be a critical submanifold of f. For any p € C let
Ap denote the index of H}(f). This integer is the dimension of v, C and is locally
constant by the preceding lemma. If C' is connected, then A, is constant throughout C
and we call A\, = ¢ the Morse-Bott index of C.

Cascades. Let f : M — R be a Morse-Bott function on a finite dimensional compact
smooth manifold, and let

l
Cr(f) = H0j>

where (1, ..., are disjoint connected critical submanifolds of Morse-Bott index
A1, ..., A\ respectively. Let f; : C; — R be a Morse function on the critical submani-
fold Cj for all 5 =1,...,1. If ¢ € C; is a critical point of f; : C; — R, then we will
denote the Morse index of g relative to f; by )\g, the stable manifold of ¢ relative to
fi by W]‘?’](q) C (j, and the unstable manifold of ¢ relative to f; by Wf“](q) C ;.

Definition 7. If ¢ € C; is a critical point of the Morse function f; : C; — R for
some j =1,...,1, then the total index of q, denoted \;, is defined to be the sum of
the Morse-Bott index of C; and the Morse index of q relative to f;, i.e.

A=+ X
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The following is a restatement of Definition A.5 of [16].

Definition 8. Forq € Cr(f;), p € Cr(f;), andn € N, a flow line with n cascades
from q to p is a 2n — 1-tuple:
((zk)1<k<n, (te)1<k<n—1)

where x, € C°(R, M) and t, € Ry = {t € R| t > 0} satisfy the following for all k.
(1) Each zy is a non-constant gradient flow line of f, i.e.

d
g or(t) = = (V) (zx(t).
(2) For the first cascade x1(t) we have

t——o0

and for the last cascade x,(t) we have
tllrglo z,(t) € Wi(p) € Ci.
(3) For 1 <k <n —1 there are critical submanifolds C;, and gradient flow lines
yr € C®(R,C},) of fj,., ie.
L lt) = (V) (1)),
such that limy_, o z(t) = yr(0) and limy_,_ o Tx11(t) = yr(te).

When 7 =1 a flow line with zero cascades from q to p is a gradient flow line
of f; from q to p.
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Note: When j # i a flow line with cascades from ¢ to p must have at least one
cascade.

Note: With respect to the notation in the preceding definition, we will say that the
flow line with n cascades ((xg)1<k<n, (tk)1<k<n—1) begins at ¢ and ends at p if the
conditions listed in (2) hold, i.e.

t——o0

and
tlim z,(t) € Wi (p) C Ci.

Note: In the preceding definition the parameterizations of the gradient flow lines yy ()
of the Morse functions f;, : C;, — R are fixed in (3) by limy— 2% () = y%(0), and the
entry ¢, records the time spent flowing along the critical submanifold C}, (or resting
at a critical point). However, the parameterizations of the cascades z(t), ..., x,(t)
are not fixed. Hence, there is an action of R” on a flow line with n cascades given by

(@x(t))1<h<ns () 1<h<n—1) = ((@x(t + sk))1<b<n, (tk)1<k<n—1)

for (s1,...,s,) € R™

Definition 9. For ¢ € Cr(f;), p € Cr(fi), and n € N we denote the space of flow
lines from q to p with n cascades by W<(q,p), and we denote the quotient of W<(q, p)
by the action of R™ by

M. (q,p) = Wi, p)/R".
The set of unparameterized flow lines with cascades from q to p is defined
to be

M(q.p) = |J M;(g.p)

neZy

where M§(q,p) = W§(q,p)/R. We will say that an element of M(q,p) begins at q
and ends at p.

We now prove that M¢(q, p) is a smooth manifold of dimension A\, — A, — 1 when
f : M — R satisfies the Morse-Bott-Smale transversality condition with respect to
the metric g, the Morse functions fi : Cr — R satisfy the Morse-Smale transversality
condition with respect to the restriction of g to Cy for all k =1,...,[, and the stable
and unstable manifolds of the Morse-Smale functions f; : C; — Rand f; : C; — R are
transverse to certain beginning and endpoint maps. Our proof uses fibered product
constructions on smooth manifolds with corners similar to those found in [7].

Definition 10 (Morse-Bott-Smale Transversality). A Morse-Bott function f : M —
R is said to satisfy the Morse-Bott-Smale transversality condition with respect
to a given Riemannian metric g on M if and only if for any two connected critical
submanifolds C'" and C', Wi (q) intersects W3 (C") transversely in M, i.e. Wi (q) rh
W3(C') € M, for all q € C.
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Let C), and Cy be two connected critical submanifolds of f, and let W§(C) and
W;(Ck/) denote the unstable and stable manifolds of C} and Cy with respect to
the flow of —V f. The Morse-Bott-Smale transversality assumption implies that the
moduli space of gradient flow lines of f:

M (Ch, Ci) = (WE(C) N WE(Ch)) /R

is either empty or a smooth manifold of dimension A\, — s +dim Cy—1. Moreover, the
beginning and endpoint maps d_ : M;(Cy, Cx) — Cy and 04 : M;(Cy,Cr) — Cl
are smooth, and the beginning point map 0_ is a submersion (see Lemma 5.19 of [7]).

Now assume that the following moduli spaces and fibered products are nonempty.
Then for distinct &k, k', k" € {1,2,...,l} and t € R, = {t € R| t > 0} we can consider
the fibered product

(Ry x My (Cy, Cr)) X,y My(Crr, Cor) = = = Mp(Crr, Cr)
|
\i

la
R+ X Mf(Ck, Ck/) §0t08+07r2 Ok’

where 15 denotes projection onto the second component and ¢; denotes the gradient
flow of fi» along the critical submanifold Cjy for time ¢ € R,. This fibered product is
a smooth manifold with boundary because 0_ : M;(Cy, Cyr) — Cjs is a submersion,
and its dimension is

()\k — A\ +dim Ck) + ()\k’ — A +dim Cp — 1) — dim Cy
= A — A +dim Cp, — 1

(see Lemma 4.5 and Lemma 5.21 of [7]). Similarly, for any set of distinct integers
{j1, 725y Jn-1} € {1,2,...,1} such that the following moduli spaces are nonempty,
the iterated fibered product

(R x M;(C5,Cy)) Xy, (R X Mp(Cy,Cy,)) Xy, -
xc; ,(Re x My(Cy,,,Cj, 1)) Xe; My(Cy, ., Ci)

is a smooth manifold with corners because 0_ oy : Ry X M;(Cy,Cy) — C is a
submersion and a stratum submersion for all k£, k' = 1,...,1. We will denote this
smooth manifold with corners by M¢(C;,Cj,,...,Cj, ,,C;). Its dimension is

(A = Ajy +dim C5) + (A, = Ajy +dim €, ) —dim G, + -+
+ ()\jn72 — )\jn71 + dim Cjn72) — dim thﬁz + ()‘jn71 — )\z + dim thﬁl — 1)
— dlm thﬁl

== )\j—)\i—l—diij—l,
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which is independent of ji,72,...,7,—1. Note that we have smooth beginning and
endpoint maps

0 : M;(Cb ij sy Cjnfm CZ) - Cj

8+ : M;(Cj, le, cee 7Cjn717 CZ) — Cz

We can now state our transversality assumptions for the stable and unstable man-
ifolds W} (p) and W (¢) of the Morse-Smale functions f; : C; — R and f; : C; — R
with respect to these beginning and endpoint maps.

Definition 11. The stable and unstable manifolds W (p) and Wi (q) are trans-

verse to the beginning and endpoint maps if and only if for any set (possibly
empty) of distinct integers {j1, jo, -, Jn—1}t C {1,2,...,1} such that the moduli space
ME(C;,Cyy ..., Cy, 1, C) is not empty the map

ME(C;,Cy, . Ch 1 C) 25 0y x

is transverse and stratum transverse to Wy, (q) x Wi(p).

Note: When {j1,j2, -, jn-1} = 0 we have M{(C}, C;) = M(C;, C;).

Lemma 12. There exist arbitrarily small perturbatwns of fi :Ci = Rand f; : C; —
R to smooth Morse-Smale functions fZ and fj such that all the stable and unstable
manifolds of f; and fj are transverse to the beginning and endpoint maps. More-

over, there exist open neighborhoods of fi and fj consisting of smooth Morse-Smale
functions whose stable and unstable manifolds are all transverse to the beginning and
endpoint maps.

Proof: Let {ji1,j2,--,Jn-1} C {1,2,...,1} be a (possibly empty) set of distinct inte-
gers such that the moduli space M¢(C;,Cy,,...,C;, ,,C;) is not empty, and let X
be a stratum of MS(C;,Cj,,...,Cj, ,,C;). Let

E; i RO S W (p) C G and B} RN — W(q) € C;

be the surjective smooth embeddings from Section 2, where p € Cr(fi), ¢ € Cr(fj),

and we have identified T;C; = RAm Ci=Xy and T L0 = R, The stable and unstable
manifolds W§ (p) and W (q) are transverse to (0-,04) : X — Cj x Cj if and only if
the map

(B}, E}) x (0-,04) : (RY x RIm CA) 5 X 5 (O x Cy) x (C x C)

is transverse to the diagonal A C (C; x C;) x (C; x C}).

For any r > 2 the set of C" Morse-Smale functions on a smooth Riemannian
manifold (M, g) is an open and dense subset of the set of all C" functions on M, and
the phase diagram of a Morse-Smale function is stable under small C" perturbations

[26]. Thus, there exist a neighborhood N, € C"(M,R) of f; such that f; € Ny,
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implies that f; is a Morse-Smale function with critical points of the same index and
near the critical points of f;. Similarly, there exists a neighborhood Ny, C C"(M,R)
of f; such that fj € Ny, implies that fj is a Morse-Smale function with critical points
of the same index and near the critical points of f;. Moreover, we can choose these
neighborhoods small enough so that the maps

SINp = CTRI G ) and EY: NG, — CT(RY,C))
defined by sending fi € N, to the embedding ES (with respect to the critical point p

near p) and fj € Ny, to the embedding E“ (Wlth respect to the critical point ¢ near q)

are well defined and of class C”. In partlcular we can choose the neighborhoods small
enough so that we can identify T;C; = T,C; = Rdm Ci=X, and T;C; =T,C; = R,
The map

(E" x E*) x (0_,04) : (N}, x Np,) x (RY x RI™GN 5 X) — (Cy % C) % (Cy x Cy)
defined by

(B x ) % (0-,0,)) (55 ) % (2,07)) = (B (2), B3 (1)) % (0-(2), 0:(7)

is of class C" (see Theorem 12.3 of [2]) and transverse to A C ( % C;) x (C x Cy).
Hence, by the Transversality Density Theorem (Theorem 19.1 of [ ]) the set of Morse-
Smale functions (f;, fi) € Ny, x Ny, such that

(EJH;J,E;;) X (8_,8_1_) : (]ng % ]Rdim Ci—A;) x X — (Cy X Cz) % (Cy X Cz)

is transverse to A is residual (and hence dense) in Ny, x Ny, for r > 2 large enough,
e.g. r>3dim M.

Since there are only finitely many subsets {j1, ja, ..., jn—1} C {1,2,...,1}, finitely
many critical points of f; and f;, and finitely many strata X, we can intersect finitely
many such residual sets to obtain a residual (and hence dense) subset R € Ny, x Ny,
such that

c (a 8+
Mn(0j70j17 SR 7Cjn7170) - C x C;

is transverse and stratum transverse to Wf“(q) X W]f( p) for all § € Cr(f;) and p €
g [

Cr(f;) whenever ( fj, fi) € R. Moreover, since the space of smooth Morse-Smale
functions on M is dense in the space of C" Morse-Smale functions on M, the Openness
of Transversal Intersection Theorem (Theorem 18.2 of [2]) implies that we can find
open neighborhoods of smooth functions arbitrarily close to f; and f; consisting of
Morse-Smale functions fj and f; with ( fj, ﬁ) eR.

O
Note: The critical points of f; and f; may not be preserved by the perturbations in

the preceding lemma. However, it is possible to choose the perturbations so that the
phase diagrams of f; and f; do not change [26]. In particular, the number of critical
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points of index k remains the same for all Kk = 1,..., m, which also follows from the
Rigidity Theorem 1.19 of [14].

The next theorem should be compared with Theorem A.12 from [16], whose proof
uses the modern infinite dimensional techniques of Floer homology. Theorem A.12 in
[16] is proved under the assumption that the Riemannian metric g on M is generic,
which is necessary to ensure that a certain Fredholm operator used in the proof of
the theorem is surjective.

Theorem 13. Assume that [ satisfies the Morse-Bott-Smale transversality condition
with respect to the Riemannian metric g on M, fr : Cp — R satisfies the Morse-
Smale transversality condition with respect to the restriction of g to Cy for all k =
1,...,1, and the unstable and stable manifolds Wf“](q) and W3 (p) are transverse to
the beginning and endpoint maps.

(1) Whenn = 0,1 the set MS(q,p) is either empty or a smooth manifold without
boundary.

(2) Forn > 1 the set MS(q,p) is either empty or a smooth manifold with corners.

(3) The set M (q,p) is either empty or a smooth manifold without boundary.

In each case the dimension of the manifold is \; — A\, — 1. When M is orientable and
Cy is orientable for all k =1,...,1, the above manifolds are orientable.

Proof: For more details concerning the notation and dimension formulas used in the
following we refer the reader to Sections 3 and 4 of [7]. We first prove statements (1)
and (2) using pullback constructions. A gluing theorem is then used to show that the
space M<, (C}, C;) consisting of flow lines with at most n cascades beginning at any
point in C; and ending at any point in C; is a manifold without boundary. Pulling
back W§ (q) x W (p) via the beginning and endpoint maps on M<,(Cj, C;) then shows
that M¢(q, p) is a smooth manifold without boundary of dimension A\, — A, — 1.

The space M§(q,p) is empty unless ¢ = j, and when i = j the theorem follows
from the fact that f; satisfies the Morse-Smale transversality condition. For the case
n = 1 note that the assumption that

Mi(C;,C) = 0 x ¢
is transverse to W (¢) x W} (p) implies that

def

MW (q), Wi(p) = (0-,00)" (W (q) x Wi (p))
is either empty or a smooth manifold. In the second case, the codimension of
the manifold M (W} (q), W} (p)) is dim C; — A + A, and hence the dimension of
MW (q), Wi(p)) is Aj + N — (A + ) — 1 since the dimension of MS(Cy, C;)
is \; — A +dim C; — 1. (See for instance Theorem 5.11 of [4].) This shows that
Mi(g,p) = M§(W} (q), W} (p)) is a smooth manifold without boundary of dimen-
sion Ay — Ap — 1.
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Now assume that n > 1 and the following moduli spaces and fibered products are
nonempty. Then for distinct ji, jo, ..., Jn—1 € {1,2,...,1} the assumption that

ME(Cy, s Oy C) 22 05 x

is transverse and stratum transverse to W (q) x W7} (p) implies that
def

M (Wi (0), Chi -, Gy, Wi (D) = (9-,04) 7 (W (a) x Wi (p))

is a smooth manifold with corners of dimension A\, — A, — 1. This shows that

MSL((LP) = U MSL(qu] (Q), Cj1> s ?Cjn717 W;Z (p))
{jl 7777 jnfl}
is a smooth manifold with corners of dimension A\; — A\, — 1, where the union is taken
over all sets of distinct integers {ji,...,Jn—1} C {1,2,...,{}. This completes the
proof of statements (1) and (2).

We now use a gluing theorem to define smooth charts on

c def c
Sn(0j> CZ) = U Mk(0j> CZ)
k=0
where M (C;}, C;) denotes the union of M (C;,Cj,,...,Cj_,,C;) over all sets of
distinct integers {ji,...,Jk—1} C {1,2,...,l} when k£ > 1. For distinct k, k', k" €
{1,2,...,1} there exists an € > 0 and a smooth injective local diffeomorphism

G Mf(Ck,Ck/) Xck, Mf(Ck/,C N) X (—8,0) — Mf(Ck,Cku)

onto an end of M (Cy, Cyr), where the fibered product is taken with respect to the
beginning and endpoint maps 0_ and 0;. (See for instance Appendix A.3 of [3] or
Theorem 4.8 of [7].) Let p: (—,00) — (—¢,00) be a smooth map that is smoothly

homotopic to
t t>0

t t>e¢/2

plt) = { 0 t<0.
For € > 0 sufficiently small we can replace the maps ¢; 00, o7y in the iterated fibered
product that defines M (C;,Cy,,...,C;},_,,C;) with the maps @) o 04 o mp and
obtain a smooth manifold with corners that is smoothly diffeomorphic to the original
manifold. Moreover, if we choose £ > 0 small enough, then W§ (¢q) and W (p) will
still be transverse to the beginning and endpoint maps from the modified fibered
product space.

and satisfies

Using the maps ¢, 0 4 o Ty and d_ we consider the fibered product
((_57 OO) X Mf(0j> Ck)) Xy, Mf(0k> CZ)
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where k£ € {1,2,...,1}. The part of this smooth manifold where —e < t < 0 is
diffeomorphic to an end of M{(C}, C;) by the above gluing theorem, and the part of
the space where t > 0 is diffeomorphic to M§(C}, Cy, C;). Therefore, there are smooth
charts on the above manifold around the points where ¢ = 0 which are compatible
with the smooth charts on MS(C}, C;) and the smooth charts on M§(C;, Cy, C;).
This shows that the space M%,(C}, C;) of unparameterized flow lines with at most
2 cascades from Cj to Cj is a smooth manifold without boundary of dimension Aj —

Continuing by induction, for distinct 71, j2, . . ., jn—1 € {1,2,..., 1} the fibered prod-
uct

((_57 OO) X Mf(0j> le)) yern ((_57 OO) X Mf(ojm Cjz)) XCyy "
X, o ((_57 OO) X Mf(cjn—m Cjn—1)) X1 Mf(ojnfm CZ)

with respect to the maps ¢,y o 01 o mp and O_ o m; is a smooth manifold. The
part of the space where —e < t;, < 0 for some k is diffeomorphic to an end of
M, _1(C},C;), and the part of the space where ¢, > 0 for all k is diffeomorphic
to MS(Cy,Cyy, ..., Cj,_,,Ci). Thus, the space M2, (C}, C;) of unparameterized flow
lines with at most n cascades from C; to Cj is a smooth manifold without boundary
of dimension \; — \; + dim C; — 1. Moreover,

8-,
(05, G) e
is transverse to W (q) x W7 (p). The pullback of W¥ (¢) x W (p) under this map is
the space of unparameterized flow lines with at most n cascades from ¢ to p:

¢ (a.p) = | Mi(q,p).
k=0
Hence, for any 0 < n <[ the space M<, (q,p) is either empty or a smooth manifold
without boundary of dimension A, — A\, — 1. Taking n = [ we see that M(q,p) is
either empty or a smooth manifold without boundary of dimension A, — A\, — 1.
Now, an orientation on M and orientations on C; for all j = 1,...,[ determine
orientations on the above fibered products by the results in Section 5.2 of [7]. If we
choose the gluing diffeomorphisms to be compatible with these orientations, then we
obtain an orientation on M¢(q, p).
O

4. BROKEN FLOW LINES WITH CASCADES

We will now consider the compactness properties of M¢(q,p). In general, M¢(q, p)
will be a non-compact manifold because a sequence of unparameterized flow lines
with cascades from ¢ to p may converge to a broken flow line with cascades from ¢
to p. Throughout this section we will assume that f satisfies the Morse-Bott-Smale
transversality condition with respect to the Riemannian metric g on a compact smooth
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manifold M, fr : Cp — R satisfies the Morse-Smale transversality condition with
respect to the restriction of g to Cj for all k = 1,...,[, and the unstable and stable
manifolds W, (q) and W} (p) are transverse to the beginning and endpoint maps.

It is well known that any sequence of unparameterized gradient flow lines between
two critical points of a Morse-Smale function must have a subsequence that converges
to a broken flow line. However, making this statement precise requires a discussion
of the topology on the space of broken flow lines. The topology on the space of
broken flow lines can be defined in several ways, including the compact open topology
(after picking specific parameterizations for the flow lines), in terms of Floer-Gromov
convergence, and using the Hausdorff metric (after identifying a broken flow line with
its image). For a detailed discussion concerning different ways to define the topology
on the space of broken flow lines of a Morse-Smale function and proofs that the
resulting spaces are homeomorphic see [23].

To prove a similar result for cascades we first need to explain what we mean by a
broken flow line with cascades. Roughly speaking, a broken flow line with cascades is
a concatenation of unparameterized flow line with cascades that either flows along an
intermediate critical submanifold for infinite time or rests at an intermediate critical
point of one of the Morse functions f; : Cx — R for some & = 1,...,[ for infinite
time. To make this more precise, recall that a flow line with cascades is of the form
((xk)1<k<n, (tk)1<k<n—1) Where ¢, € Ry = {t € R| t > 0}. In particular, ¢, < oo,
but we might have t, = 0 for some k. If t, = 0 for some k, then the flow line
with cascades “looks like” it contains a broken flow line. That is, if £, = 0, then
limy oo () = limy—, o 2441 (t) and (xg, xx11) is a broken flow line of the Morse-Bott
function f : M — R. However, (g, 11, 0) is an unbroken flow line with 2 cascades.

Since a flow line with cascades must begin and end at critical points of the Morse
functions chosen on the critical submanifolds, it’s clear that (z, zx4+1) should not be
called a broken flow line with cascades when limy;_, xx(t) = lim;_—_ o Tx11(t) is not a
critical point of f;, : Cj, — R. In order to be consistent, we will not call (zj, zx41) a
broken flow line with cascades even if lim;_, o 21 (t) = limy_, _o, xx11(t) = 7 is a critical
point of f; : Cj, — R. Instead, we will always assume that the time spent resting at
the intermediate critical point is zero, unless the time is otherwise specified. That is,
we will identify (zy, xry1) with the flow line with 2 cascades (xg, Zg11,0).

In general, suppose that we have an n-tuple of unparameterized flow lines with
cascades (vi,...,v,) such that v; begins at ¢ € Cr(f;), v, ends at p € Cr(f;),
and v, begins where v,_; ends for 2 < v < n. Suppose that v, is represented by
((x§)1<h<n, » (t7)1<k<n, 1) and v,y is represented by (3™ )1<k<n, 1, (B )1<hn, 1 -1)-
The statement that v, begins where v,_; ends means that there is a critical point
r of one of the Morse functions fi : Cpy — R for some £ = 1,...,[ such that
limy oo 2yt (t) € W3 (r) and limy oo 2}, (t) € W} (r). So, it appears that (v,1,v,)
differs from an unparameterized flow line with cascades in that (v,_;,v,) flows along

the intermediate critical submanifold Cj, for infinite time. However, if limy . 2! () =
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lim._x}, (t) = r, then (v,_;,v,) determines an unparameterized flow line with
n,—1 + n, cascades where the time spent resting at the intermediate critical point ¢
is 0, i.e. the unparameterized flow line with cascades represented by

(27 1<kzng s (@) 1<k<n, s (6 D 1<k<n, -1, 0, (E)1<k<n, —1)-

In this case, we will identify (v,_;,v,) with the unparameterized flow line with cas-
cades represented by the above tuple.

It is interesting to consider what this convention means for a Morse-Smale function
f : M — R. Suppose that p,q,7 € Cr(f), 7 is a gradient flow line from ¢ to
r and v is a gradient flow line from r to p. Then with this convention we are
identifying the broken gradient flow line represented by (71,72) with the flow line
with 2 cascades (71,72, 0). In fact, for a Morse-Smale function this convention means
that the only truly broken flow lines with cascades have representations of the form
((xk)1<k<n, (tk)1<k<n—1), Where t;, = oo for some k.

Definition 14. A broken flow line with cascades from q € Cr(f;) top € Cr(f;)
is an n-tuple of unparameterized flow lines with cascades (vy,...,v,) such that vy
begins at q, v, ends at p, and v, begins where v,_1 ends for 2 < v < n, subject to the
following restriction. If the last cascade of v,_1 and the first cascade of v, meet at a
critical point of one of the Morse functions fi : Cr, — R for some k =1,....,1, then
the time spent resting at the critical point is infinity.

A sequence of unparameterized flow lines with cascades from ¢ € Cr(f;) to p €
Cr(f;) must have a subsequence that converges to a broken flow line with cascades
from ¢ to p. This is proved in Theorem A.10 of [16] with respect to Floer-Gromov
convergence (Definition A.9 of [16]). Our approach to this theorem will be in terms
of the Hausdorff metric.

Definition 15. Let (X, d) be a compact metric space and let Ky and Ky be nonempty
closed subsets of X. The Hausdorff distance between K, and K is defined to be

dy (K, Ky) = max{ sup inf d(zy,x9), sup inf d(l’l,l’g)}

mleKlmQGKg mzeszleKl

= inf {8 > 0| K, C Ne(KQ) and Ky C Ne(Kl)}
where Ne(K) = U, cx{z € X| d(z,y) < e}

Note: The Hausdorff distance on the set of all nonempty closed subsets P¢(X) of
a compact metric space (X, d) is a metric, and the two definitions of the Hausdorff
metric given above are equivalent. Moreover, the space P¢(X) is itself compact in the
topology determined by the Hausdorff metric. (See for instance Section 7.3 of [24].)

We would now like to identify a broken flow line with cascades with a closed subset
of some compact metric space. For broken flow lines without cascades this is done by
identifying a broken flow line of a Morse-Bott-Smale function with its image in the
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compact manifold M (see Section 2 of [18]). However, a flow line with cascades may
have a cascade zj that ends at a critical point. In this case the parameter t; records
the time spent resting at the critical point instead of time spent flowing along the
critical submanifold. Hence, the map that sends a broken flow line with cascades to
its image in M is not injective. To make this map injective we should keep track of
the times t;, in addition to the image of the broken flow line.

Following [29] we make the following definition.
Definition 16. Define the compactification of R to be R = R Uii—oo} equipped with
the structure of a bounded manifold by the requirement that 1 : R — [—1,1] given by

t
0= e

be a diffeomorphism.
We also make the following definition regarding the different gradient flows.

Definition 17. Let f : M — R be a Morse-Bott function on a Riemannian manifold
(M, g) with critical set Cr(f) = H§:1 Cj, and let f; : C; — R be a Morse function
on the critical submanifold C; for j =1,...,1. We define the flow of {f, f1,..., fi}
on M to be the action ¢ : R x M — M given on a point x € M for time t € R by

¢($)_{S0{($) ife g Cr(f)=CiU---UC
T ol () if v € Cj for somej=1,....1

where gp{ denotes the 1-parameter group of diffeomorphisms generated by —V f and
gp{j denotes the 1-parameter group of diffeomorphisms generated by —V f; (with respect

to the restriction of g to C;) for all j = 1,...,1. We extend this action to R by taking
limits as t approaches +o0.

Note: The flow of {f, f1,..., fi} defines a map ¢ : R x M — M that is smooth when
restricted to R x (M — Cr(f)) or to R x Cr(f).

We now explain how to identify a broken flow line with cascades with an element
of the compact metric space P¢(M) X @l, where [ is the number of components
of Cr(f) = H§':1 Cj. Recall that the space of all nonempty closed subsets of M,
Pe(M), is a compact metric space with respect to the Hausdorff metric. For the

metric on R we will use the totally bounded metric determined by the diffeomorphism
R —[—1,1]. That is, for z,y € R we define

z )
VItar /142

and note that d has a unique continuous extension to a metric on R. The space

d(z,y) =

€ [0, 2]

Pe(M) x R’ is then a compact metric space with respect to the product metric.
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We will map a broken flow line with cascades (v, . . ., v,) to its image Im(vy, ..., v,)
in M and the time ¢; spent flowing along or resting on each critical submanifold C}
for all j = 1,...,1. This gives a nonempty closed subset of M and an [-tuple in @l,
i.e. an element Im(vy,...,v,) X (t1,...,t) € P¢(M) x R

More explicitly, we define Im(vy,...,v,) C M for a broken flow line with cascades
(v1,...,v,) as follows. Let v € {1,...,n} and suppose that the unparameterized flow
line with n, cascades v, has a parameterization

((@)1<hsn, > () 1<k<n, 1)
where 2}, € C*(R, M) and t; € Ry. Then the image of v, in M is defined to be

ny—1

(o) = |J24® U | dom(ai(co) € M

where ¢jo v (2} (00)) = Uoststz o(x7(00)) and zf(00) = limy—,oo 2% (t). This definition
is clearly independent of the parameterization, and we define Im(vy,...,v,) C M to
be the union of the images of v, for all v =1,...,n. Note that Im(vy, ..., v,) is the

image of a continuous injective path between two critical points which is R-equivariant
with respect to the flow ¢ of {f, f1,..., fi}.

For the other components we map (vy, . . ., v,) to an [-tuple of elements (¢4, ...,t;) €

R’ that records the time spent flowing along or resting on each critical submanifold.
Explicitly, the jth component of this map is defined to be:

0 if the image of (vy,...,v,) does not intersect Cj
t; if for some v = 1,...,n the cascade v, flows along or rests on
the critical submanifold C; for finite time ¢;
oo otherwise.

Altogether, this defines an injective map
(U1, ..oy o) = Im(vy, .o v,) X (E, ... t) € PY(M) X R

Definition 18. The topology on the space of broken flow lines with cascades is defined
by the requirement that the above injection be a homeomorphism onto its image.

For ¢ € Cr(f;) and p € Cr(f;) we will identify the space of broken flow lines with
cascades from ¢ to p with its image under the above injection and denote this space

by M*(q,p) C PE(M) x R

Theorem 19. The space ﬂc(q,p) 1s compact, and the injection defined above restricts
to a continuous embedding

M®(q,p) — M (q,p) C P4(M) x R,

Hence, every sequence of unparameterized flow lines with cascades from q to p has a
subsequence that converges to a broken flow line with cascades from q to p.
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k

Proof: Since P¢(M) x R is compact, any sequence of broken flow lines {(vf, ..., v} )}

in M (¢q,p) C P¢(M) x R’ must have a subsequence that converges to some element

Cym X (t1,...,t) € PY(M) x R'. We need to show that there exists a subsequence of
{(vf,...,vE )} (which we still denote by {(vf,..., vk )}) such that the limit of this

r Y ng

subsequence (which we still denote by Ciy X (t1,. .., 1)) is in M (g, p) € P(M) x i

k

We will first show that there exists a subsequence of {(vf,...,v} )} such that

Cy = Im(vy, ..., v,) for some broken flow line with cascades (vy,...,v,) from ¢ to

k

p. To see this, note that since I'm(v¥,. .. ,up ) C M s R-equivariant with respect

to the flow ¢ of {f, f1,..., fi} and limy_o Im(vf,..., v} ) = Cy in the Hausdorff

metric, Cj; is also R-equivariant with respect to the flow ¢. Moreover for every k,

k k

Im(vy, ..., v, ) is the image of a continuous injective path from ¢ to p with at most

one point on each level set f~1(y) for every regular value y of f and at most one point

on each level set fj_l(y) for every value y € R for all j = 1,...,[. Thus, we can pass

to a subsequence of {(v¥,... vF )} such that the same holds for the limit. This shows

that after passing to an appropkriate subsequence we have Cy; = Im(vy,...,v,) for
some broken flow line with cascades (v, ..., v,) from ¢ to p.

Now let j € {1,...,1}. For (t1,...,t;) there are two cases to consider: 1) the
sequence {Im(vf, ..., v} )} does not intersect the critical submanifold C; for any k

and 2) the sequence {Im (v}, ..., vk )} intersects the critical submanifold C; for all k

r Y ng
sufficiently large. Otherwise we can pass to a subsequence that fits one of these two
cases. For the first case, note that the limit C'y;, which is the image of a broken flow

line with cascades, can intersect C; in at most one point since f decreases along its
gradient flow lines. Thus, for ITm(vf, ... vk ) x (t§,... tF) € P4(M) x R we have

r U ng 7’
t;? = 0 for all k, and ¢; = 0. For the second case, note that since R is a compact

metric space, we can pass to a subsequence such that t;? — t; for some t; € R. By

passing to a subsequence for each j = 1,...,] we obtain an element (¢y,...,%;) € R’
such that

Tm(of, .., 08 ) x (85, ) = Im(vr, . va) X (1, ..., 1) € PY(M) x R
as k — oo and t; records the time (vy, ..., v,) spends flowing along or resting on each
critical submanifold C; for all j = 1,...,[. Therefore, every sequence of broken flow

lines with cascades from ¢ to p has a subsequence that converges to a broken flow line
with cascades from ¢ to p in M (¢, p) € P¢(M) x R
To see that the injection defined above restricts to a continuous embedding

M®(q,p) — M (q,p) C P(M) xR

note that the fibered product and gluing constructions used in the proof of Theorem
13 are compatible with the Hausdorff metric. That is, if a sequence of points v¥
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contained in a smooth chart of M¢(q, p) converges to a point v in the chart, then
Im(v®) x (5, .. tF) — Im(v) x (t1,...,t)

as k — oo.

Corollary 20. If A\, — \, = 1, then M°(q,p) is compact and hence a finite set.

Proof: Let v* be a sequence of unparameterized flow lines with cascades from g to
p. By the preceding theorem v* has a subsequence that converges to a broken flow
line with cascades (vy,...,v,) from ¢ to p. Suppose that v; ends at a critical point
p’ with p’ # p. Then Theorem 13 implies that A, > A, > \,, which contradicts the
assumption that A\, — A\, = 1. Thus, p’ = p, n = 1, and every sequence in M¢(q, p)
has a subsequence that converges to an element of M¢(q,p). Therefore, M(q,p) is
a compact zero dimensional manifold, i.e. a finite set of points.

O

The preceding corollary allows us to make the following definition under the follow-
ing assumptions: 1) f satisfies the Morse-Bott-Smale transversality condition with
respect to the Riemannian metric g on M, 2) fi : Cx — R satisfies the Morse-Smale
transversality condition with respect to the restriction of g to Cy for all k =1,...,1,
and 3) for all (7,7) and for each pair of critical points (q,p) € Cr(f;) x Cr(f;) the
unstable and stable manifolds W (¢) and W (p) are transverse to the beginning and
endpoint maps. Recall that the total index of a critical point of f; was defined in
Definition 7 as the Morse index relative to f; plus the Morse-Bott index of the criti-
cal submanifold C;. Let Cr = U§'=1 Cr(f;) be the set of critical points of the Morse
functions f; : C; — R, and let Cry C Cr be the subset of critical points whose total
index is k for all k =0,...m

Definition 21. Define the k™ chain group C¢(f) to be the free abelian group generated
by the critical points of total index k of the Morse-Smale functions f; for all j =
1,...,1, and define n°(q, p; Zs) to be the number of flow lines with cascades between a
critical point q of total index k and a critical point p of total index k — 1 counted mod
2. Let

)@ Ly = @Ok ® Zs

and define a homomorphism 05 : C£(f) ® Zg — Cr_(f) ® Zy by

O(q) = > n(q,p;Za)p.

peCri_1

The pair (CS(f) ® Za, 0S) is called the cascade chain complex with Zs coefficients.
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In the appendix to [16] there is a continuation theorem that implies that the cascade
chain complex with Z, coefficients is, in fact, a chain complex whose homology is
isomorphic to the singular homology H.(M;Zs). We will not prove this here. Instead,
we will use the Morse-Smale functions f; : C; — R for j = 1,...,[ to define an explicit
perturbation of f : M — R to a Morse-Smale function h. : M — R such that for
every k=0,...,m

Cre(he) = () Cralf),
Aj+n=k
where ); is the Morse-Bott index of the critical submanifold C}.

By proving a correspondence theorem, we will show that for any ¢ € Cr(f;) and p €
Cr(fi;) with A, — A, = 1 there is a one dimensional trivial cobordism between M¢(q, p)
and My,_(q,p). This cobordism induces an orientation on M¢(q, p), which allows us
to define the above homomorphism 9¢ over Z. Moreover, the cobordism shows that 9¢
is a boundary operator that agrees with the Morse-Smale-Witten boundary operator
of h. up to sign.

5. THE CORRESPONDENCE THEOREM

In this section we define a 1-parameter family of Morse-Smale functions h. : M — R
in terms of an explicit perturbation of the Morse-Bott-Smale function f : M — R.
For any ¢ > 0 the critical set of h. is given by Cr(h.) = Ji._, Cr(fx), and the index
of a critical point p € Cr(h.) agrees with the total index of p.

We prove a correspondence theorem which says that for any £ > 0 sufficiently small
there is a bijection between unparameterized flow lines with cascades and unparame-
terized gradient flow lines of h. : M — R between any two critical points p, g € Cr(h,)
with \; — A, = 1. The correspondence theorem allows us to count the number of un-
parameterized flow lines with cascades between ¢ € Cri(h.) and p € Cri_y(h:) with
sign, which defines an integer n°(q, p) € Z.

The integers n°(q,p) define a homomorphism 95 analogous to the Morse-Smale-
Witten boundary operator such that df = —3J, (where 0 denotes the Morse-Smale-
Witten boundary operator of h.). This shows directly that J;_, o 9y = 0 and the
homology of the cascade chain complex (C¢(f),0¢) is isomorphic to the homology of
the Morse-Smale-Witten chain complex (Cy(h.), 0x). The Morse Homology Theorem
then implies that the homology of the cascade chain complex with integer coefficients
is isomorphic to the singular homology H.(M;Z).

5.1. An explicit perturbation. The following perturbation technique, based on [3],
the Morse-Bott Lemma, and a folk theorem proved in [1], produces an explicit Morse-
Smale function h. : M — R arbitrarily close to a given Morse-Bott-Smale function
f: M — R such that h. = f outside of a neighborhood of the critical set Cr(f). A
similar technique was used in [6] to give a proof of the Morse-Bott inequalities with
somewhat different orientation assumptions than the classical “half-space” method
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using the Thom Isomorphism Theorem (see [8], Appendix C of [15], and Section 2.6
of [25]).

Let f : M — R be a Morse-Bott-Smale function on a finite dimensional smooth
closed Riemannian manifold (M, g). Let T be a small open tubular neighborhood
around each connected component C; C Cr(f) for every j = 1,...,l with local
coordinates (u,v,w) consistent with those from the Morse-Bott Lemma (Lemma 5).
By “small” we mean that the following conditions hold.

(1) Each Tj is contained in the union of the domains of the charts from the Morse-
Bott Lemma.

(2) For i # j we have T, N T; = 0 and f decreases by at least three times
max{var(f,7})| j =1,...,1} along any gradient flow line from 7; to T where
var(f, T;) = sup{f(a)| & € Ty} — inf{ f(z)] = € T}}.

(3) 1f £(Cy) # (C)), then var(f, T)) +var(£, T}) < L| £(C3) — ()]

(4) For every flow line with n cascades between critical points of relative index
one ((Tg)i<k<n, (tk)1<k<n-1), the image of x; for k = 1,...,n intersects the
closure of exactly two of the tubular neighborhoods {T}}_, (see Definition 8
and Corollary 20).

In addition, we will assume that the tubular neighborhoods are small enough so
that f : M — R still satisfies the Morse-Bott-Smale transversality condition after
modifying the Riemannian metric on the tubular neighborhoods to make the charts
from the Morse-Bott Lemma isometries on 7; with respect to the standard Euclidean
metric on R™ for all j =1,...,/. From now on we will assume that the Riemannian
metric g has been so modified, i.e. the charts from the Morse-Bott Lemma are
isometries on the tubular neighborhoods with respect to g and the standard Euclidean
metric on R".

Pick positive Morse functions f; : Cy — R satisfying the Morse-Smale transversal-
ity condition with respect to the restriction of g to C for all Kk = 1,...,[ such that
for all 4,j = 1,...,1 and for every pair of critical points (¢, p) € Cr(f;) x Cr(f;) the
unstable and stable manifolds W (¢) and W (p) are transverse to the beginning and
endpoint maps (see Lemma 12). For every k = 1,...,l extend f; : Cx, — R to a
function on Ty by making fi : T, — R constant in the directions normal to CY, i.e.
fr is constant in the v and w coordinates coming from the Morse-Bott Lemma. Let
T, C Tk be a smaller open tubular neighborhood of C} with the same coordinates
as Tk, and let p be a smooth bump function which is constant in the u coordinates,
equal to 1 on T}, equal to 0 outside of T}, and strictly decreasing on T), — T}, with
respect to |v| and |w].

Finally, choose € > 0 small enough so that

sup €||Vprfil| < inf [V f]|
T —Tx Lo =T
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for all K =1,...,1, and define

!
he=f+¢ <Zpkfk> )
k=1
The function A, : M — R is a Morse function close to the Morse-Bott-Smale function
f, and the critical points of h. are exactly the critical points of the Morse-Smale
functions f; for 5 = 1,...,l. Moreover, if ¢ € C} is a critical point of f; : C; — R
of index )\Z, then q is a critical point of h. of index )\Zf =\ + )\Z, where )\; is the
Morse-Bott index of C}.

Lemma 22. There exists an arbitrarily small perturbation of the Riemannian metric
g such that hey : M — R is Morse-Smale for all 0 < &' < e with respect to the
perturbed metric. The perturbed metric can be chosen so that it agrees with g on the
union of the tubular neighborhoods {T;}_, .

Proof: Let {&;}2, be a countable dense subset of (0,¢). For every 1 < i < oo we
can apply Theorem 2.20 of [1] to conclude that there is a residual subspace R; of
the open unit ball Ky in a Banach space K such that the function h., : M — R is
Morse-Smale with respect to the Riemannian metric g + k; for all k; € R;. Moreover,
we can choose the function 6 : M — [0,00) in the statement of Theorem 2.20 to be
Zero on Ué’:1 T; so that k; = 0 on U§:1 T; for all 1 < i < 0.

For any k € ();2; R; the Riemannian metric g + k is a metric that agrees with g on
U§:1 T} such that h., : M — R is Morse-Smale with respect to g+ for all 1 <7 < o0.
Moreover, since ﬂfil R; is dense in IC; we can choose k € ﬂ;); R; arbitrarily close to
zero. This completes the proof of the lemma since the set of Morse-Smale gradient
vector fields is an open and dense subset of the space of all gradient vector fields on
a Riemannian manifold [26].

O

Note that we can choose the perturbation of the Riemannian metric small enough
so that f : M — R still satisfies the Morse-Bott-Smale transversality condition with
respect to the perturbed metric and for all (7, j) and for every pair of critical points
(¢,p) € Cr(f;) x Cr(f;) the unstable and stable manifolds W¥ (¢) and W7 (p) are still

transverse to the beginning and endpoint maps.

Lemma 23. Let p,q € Cr(h.) with Ay — X\, =1, and let 0 < &' <e. If he : M — R
and h. : M — R are Morse-Smale with respect to the same Riemannian metric, then
the number of gradient flow lines of h., from q to p is equal to the number of gradient
flow lines of h. from q to p.

Proof: The lemma will be proved by constructing a one dimensional compact smooth
manifold with boundary Mg,, (¢, p) that is a trivial cobordism between M,,_(q, p) and

Mhsl (q7 p)
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Using the notation in Section 6 of [7], we take f; = h., fo = he, and a smooth
homotopy Fb; : M x R — R that is strictly decreasing in its second component such
that for some large T' > 0 we have

(x) — p(t) if t< =T
(x) if -T<t<T
he(x) — p(t) if t>T,

h.
Fgl(l’,t) = ht

where hy(z) is an approximation to 2T = t)(he(z) = p(t)) + 2(T + t)(he () — p(t))
that makes Fy smooth and p : R — (—1,1) is a smooth strictly increasing function
such that lim;_,_ p(t) = —1 and lim;_ o, p(t) = 1. The moduli space of gradient

flow lines of F5; : M x R — R has a component

M, (¢,p) = (Wg, (@) "WE, (p)/R

of dimension 1 (see Lemma 6.2 of [7]) that can be compactified to a smooth manifold
with boundary Mpg,, (¢, p) using piecewise gradient flow lines (see Theorem 6.4 of [7]).
Moreover, the boundary of the compactified space consists of the fibered products

OMs, (4,0) = Mn.(q,p) Xp M, (p,9) [ | M1 (4, 9) x4 Mins (4, p)-
Since M, (¢,p) Xp Mpy, (p,0) = Mn(q,p), My, (q,q) Xg Mi(q,p) = My (q,p),

and Fy; : M x R — R is strictly decreasing in its second component, Mp,, (¢, p) is a
one dimensional trivial cobordism between M;,_(q, p) and My, (q, p). Thus, My_(q,p)
and My, (q,p) have the same number of elements.

O

Remark: The moduli space Mg, (¢, p) used in the preceding proof is, in the language
of [29], a space of A\-parameterized trajectories between the trivial regular homotopies
h. and h (see Definition 2.29 of [29]). A general moduli space of A-parameterized tra-
jectories is constructed in Theorem 2 of Section 2.3.2 of [29], and its compactification
is discussed in Section 2.4.4.

In summary, we have a Riemannian metric ¢ on M and a l-parameter family of
Morse functions h. : M — R such that the following conditions hold for all ¢ > 0
sufficiently small and for all 7 =1,...,[.

(1) The function hy = f : M — R satisfies the Morse-Bott-Smale transversality
condition with respect to the metric g.

(2) The functions h. : M — R and f; : C; — R satisfy the Morse-Smale transver-
sality condition with respect to g.

(3) For alli,j =1,...,1 and for each pair of critical points (g, p) € Cr(f;) x Cr(f;)
the unstable and stable manifolds W¢ (¢) and W§ (p) are transverse to the
beginning and endpoint maps.

(4) The function h. = f outside of the union of the tubular neighborhoods 7}.

(5) The function h. = f + ef; on the smaller tubular neighborhoods Tj.



26 AUGUSTIN BANYAGA AND DAVID E. HURTUBISE

(6) The charts from the Morse-Bott Lemma within the tubular neighborhoods T}
are isometries with respect to the metric on M and the standard Euclidean
metric on R™.

(7) In the local coordinates (u,v,w) of a tubular neighborhood 7} we have f =
f(C)—=|v[*+w|?, p; depends only on the v and w coordinates, and f; depends
only on the u coordinates. In particular, Vf L Vf; on T by the previous
condition. 3

(8) The gradient V f dominates eVp;f; on T; — T;.

(9) For ¢,p € Cr(h.) with A, — A, = 1, the number of gradient flow lines of h.
from ¢ to p is independent of € > 0.

Lemma 24. Let € > 0 be small enough so that the above conditions hold, and let
{e,}52, be a decreasing sequence such that 0 < €, < e for all v and lim,_ €, = 0.
Let q,p € Cr(h.), and suppose that ., € Mp_ (q,p) for all v. Then there exists a
broken flow line with cascades v € M (q,p) and a subsequence of {Im(y.,)}>, that
converges to Im(v) in the Hausdorff topology.

Proof: Let ¢ € Cj, p € Cj, and v, € My,_ (q,p) where lim,_. €, = 0. Recall that
outside of the open tubular neighborhoods {T}}._, we have h., = f, and inside T}
we have
hEV = .f + 5upk.fk

where Vf L Vfi, 0 < pr < 1, and fr > 0. Moreover, Vh.,, = Vf + &,V fi
on the smaller open tubular neighborhood Ty C Ty, and V£ dominates €,V pyfi
on Ty — Ty. By passing to a subsequence of {7, }°2, we may assume that there
exists a set of distinct integers {ji,jo,...,Jn-1} C {1,2,...,1} such that for all v
we have Im(y,) N T, # 0 for all k = 1,...,n — 1 and Im(y,) NT, = 0 if k& €
(1,2, 0y = {i, 1, Jor s nts § 1

Since P¢(M) is compact in the Hausdorff topology, there exists a subsequence of
{7e, 152, which we still denote by {7., }52, such that the compact sets

n—1
Ce, =Im(y:,) — <Ti U U 15 U Tj)

k=1
converge to some compact set C' € P¢(M) as v — oo. The interior of each C;, is
locally invariant under the flow of —V f, and hence the interior of the limit C' is also
locally invariant with respect to the flow of —V f. Moreover, for every regular value
y of f the level set f~!(y) contains at most one element of C., for each v, and hence
we can pass to a subsequence of {v., }52, such that the same holds for C. Therefore,
there exists a subsequence of {7., }>2;, which we still denote by {7., }°2,, and gradient
flow lines xy, ..., x, of =V f (not necessarily distinct) such that

n—1 n n—1
Im(y.,) — <TZ- ulJ1,u T,) — | J m(z) — <TZ- ulJ1,u Tj>
k=1

k=1 k=1
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in the Hausdorft topology as v — oo. Moreover, since Vhe, = Vf +£,Vpy fi and
there is a positive lower bound for ||V f|| on T}, — T} for all k =1,... 1 we have

n—1 n n—1
Im(y,,) — <TZ U U T;, U 73) — U Im(xy) — <TZ U U T;, U j})
k=1 k=1 k=1

in the Hausdorff topology as v — co. We will order the gradient flow lines x1,. .., z,
as in Definition 8, i.e. x4 (t) flows into T}, as t increases for all k =1,...,n — L.

On the tubular neighborhood Tj we have Vh,, = Vf +¢,Vf; where Vf L Vf;,
and hence there is a subsequence of {7., }52; such that Im(y.,) N T ; converges to a
curve consisting of the union of Im(z;) N7} and a (possibly broken) gradient flow line
of f; from ¢ to lim;_._ 21(¢). Similar statements apply to the tubular neighborhood
Ti-
For each tubular neighborhood le, e ,Tjn71 there are two cases to consider: 1)
there exists a neighborhood U C T}, of C;, such that Im(v.,) N U = 0 for all v or 2)
for every neighborhood U C Tjk of Cj, we have Im(v.,) NU # 0 for all v sufficiently
large. Otherwise we can pass to a subsequence of {~.,}°°; such that one of these cases
applies. In the first case, there is a positive lower bound for ||V £ on Im(y.,) N T},
independent of v, and hence Vh., converges to V f on Im(~.,) ﬂTjk as v — oo. Thus,
21, (t) and 11 (t) are the same gradient flow line of f, and Im(~.,) N T}, converges to
Im(zy) NTj, as v — oo.

In the second case, lim;_ xx(t) € Cj, since Im(7.,) N f~(y) converges to Im(zx) N
F () for any y > f(C;,) with Im(y.,) N f~'(y) € Tj,. Similarly, lim;__o 25,1 (t) €
Cj,. Moreover, Im(v.,) N Tj, converges to the union of Im(zy) N T}, Tm(zx.1) N T,
and a curve in Cj, from lim;_.. x4 (t) to limy__ xx41(¢). Since Vh,, =V f+¢e,Vfj,
in Tjk where Vf L Vf,, the curve in C}, must be a subset of the image of a (possibly
broken) gradient flow line of f;,. Therefore, there exists a subsequence of {7., }>°,
and a broken flow line with cascades v € M (¢, p) such that {Im(y.,)}52, converges
to Im(~y) in the Hausdorff topology.

O

5.2. Correspondence theorem. Throughout this subsection we will assume that

the function
I
he=f+e <Zpkfk>

k=1
and the Riemannian metric g on M satisfy all the conditions listed above. The main
goal of this subsection is to prove the following.

Theorem 25 (Correspondence of Moduli Spaces). Let p,q € Cr(h.) with \;,—\, = 1.
For any sufficiently small € > 0 there is a bijection between unparameterized cascades
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and unparameterized gradient flow lines of the Morse-Smale function h. : M — R
between q and p,

M (q,p) < Mu(q,p).

We will prove this theorem using results from geometric singular perturbation the-
ory [21]. In particular, we will use the Exchange Lemma for fast-slow systems [20]
[27] [28]. Roughly speaking, the Exchange Lemma says that a manifold M that is
transverse to the stable manifold of a normally hyperbolic locally invariant subman-
ifold C' will have subsets that flow forward in time under the full fast-slow system to
be near subsets of the unstable manifold of C'. The Exchange Lemma can be viewed
as a generalization of the A-Lemma, which applies to hyperbolic fixed points (see for
instance Theorem 6.17 and Corollary 6.20 of [4]).

In our setup, we have tubular neighborhoods 7} of the critical submanifolds C} for
all j =1,...,1 and local coordinate charts on 7} that are isometries with respect to
the standard Euclidean metric on R™. We also have smaller tubular neighborhoods
T; C Tj such that within the smaller tubular neighborhoods the negative gradient
flow of h. : T — R constitutes a fast-slow system because Vh, = Vf 4+ eV f; and
Vf L Vf;. Moreover, we have coordinates (u, v, w) where the function f |T} depends
only on the (v,w) coordinates, which are the fast variables, and the function f;|
depends only on the u variables, which are the slow variables.

Proof of Theorem 25: Let ¢ € Cr(f;) and p € Cr(f;). An unparameterized
cascade v € M¢(q,p) can be represented by a flow line with n cascades from ¢ to p:
((xk)1<k<n, (tk)1<k<n—1), Where tj is the time spent flowing along (or resting on) the
intermediate critical submanifold Cj,. For 1 < k <n —1, let y : R — C}, be the
parameterized gradient flow line of f;, : C;, — R satistying y,(0) = limy_~ 24 (t) and
Yp(ty) = limy__o x11(t) (as in Definition 8). Assume that y,(0) # yr(tx) for any
1 < k <n—1. This last condition is required in order to apply the Exchange Lemma,
and it holds whenever A\, — A\, = 1. To see this, note that if yx(0) = yx(tx) then there
is a piecewise gradient flow line of f from the beginning of x; to the end of xyyq.
Hence, there is a 1-parameter family of gradient flow lines of f from the beginning of
xy to the end of x4y by the gluing theorem for Morse-Bott moduli spaces (see the
proof of Theorem 13). Each of these gradient flow lines determines a unique flow line
with cascade from ¢ to p, and hence dim M¢(q,p) > 1.

For every 1 < k < n —1, let Sp C Cj, be a tubular neighborhood of the image
yx([0,¢4]) that is diffeomorphic to some contractible open subset U, C RY™ %, The
tubular neighborhood Sj exists because yi([0,%x]) is contractible and hence has a
trivial normal bundle in Cj,. Similarly, the normal bundle of S C M is trivial, and
hence Sy has a contractible tubular neighborhood in Tj,. This establishes Fenichel
coordinates (u,v,w) near Si. (See Proposition 1 and Section 6 of [20], but note that
we do not need Sy to vary with e.)
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Let BZ,Uk be a small “box” in the phase space R™ with respect to the Fenichel
coordinates near Sk, e.g.

BZUk ={(u,v,w) € R™"| |v| < A, |w| <A, u € U}

for some small A > 0, and let By denote the image of BX ;, in M. We will show that
for A > 0 and £ > 0 sufficiently small there exist submanifolds M, C W} (¢q) that
satisfy the following conditions for every 1 < k <n — 1.

(T1) There exists a point g, € My N By such that My M, W;(Sk)

(T2) The omega limit set J, = w(M; N W;(Sk) N Vi) C Sk with respect to the flow
of =V f is a manifold of dimension dim Mj, — A;,, where V}, is a small enough
open neighborhood of ¢ to ensure that My N W;(Sk) N Vi is a manifold, and
V fj,. is not tangent to Jj.

(T3) The tangent space to My at g intersects the tangent space of Wi(w(qx)) in a
zero dimensional space.

(I1) If Im(v.) N My # O for some . € My (q,p), then Im(v.) N My # () for every
V. € My (g, p) with dy(Im(7]), Im(7)) < dp (Im(7e), Im(7)).

The manifold M; exists as long as € > 0 is small enough so that the conditions listed
in the previous subsection hold. That is, the conditions in the previous subsection
imply that lim; . 21(t) € Wt (q) and Wi (limy— oo z1(¢)) M W7(S1). Thus, we can
find a small open neighborhood in W' (¢) around the point r; where the image of x;
intersects the boundary of T} with a cross section that intersects W37 (S1) transversally.

This cross section flows forward under the flow of —Vh, to a submanifold M; of
dimension A\, — 1 that intersects BN W; (S1) at some point ¢;. The Morse-Bott-
Smale transversality condition implies that \;, < A; (see Lemma 3.6 of [7]), and
hence Aj, < A\j+ M —1 =), —1 = dim M;. If dim M; < \;, +dim Cj, — 1,
then we can take M, = Mj. Otherwise, we can find a small open ball M; C M, of
dimension \;, 4+ dim C}, — 1 that satisfies the above conditions. Thus, M; exists and
dim M; = min{)\, — 1,dim C}, + \;, — 1}.

We will see by induction using the Exchange Lemma that for A > 0 and ¢ > 0
sufficiently small M, C Wy (q) exists for k = 2,...,n — 1. For this purpose, assume
that A > 0 and € > 0 are small enough so that the conditions listed in the previous
subsection hold, the Exchange Lemma applies around S for all k =1,...,n—1, and
M, exists. Assume that for some k there exists a submanifold M C W} (q) that
satisfies the above conditions, and let M} and J denote the manifolds obtained by
flowing M}, and J;, forward in time with respect to —Vh. on the time interval [0, c0).
The dimension of M is dim M}, + 1, and dim J; = dim M} — A, .

Let xf_,(t) be the gradient flow line of h. through the point 7441 where the image
of xj11(t) intersects the boundary of 7},. We have limy_._ xf_ () = lim;—_o yx(2).
Hence, as long as ¢ > 0 is sufficiently small, the point where zf_,(t) exits the box
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TkH’ 7,

(t) Il M, zi(t) )

By, will be in Wi (J;;). Choose a small open disk Dy in W (J;7) of dimension dim My
around this point. The Exchange Lemma implies that by decreasing ¢ > 0 we can
find an open disk Dy, in M as close as we like to Dy. (See for instance Theorem 6.5
of [20], Lemma 6 of [21], or Theorem 2.3 of [28].) In this context “close” can be in
the sense of Definition 6.13 of [4] or “close” in the sense that Dy can be expressed as
the graph of a vector valued function over Dy that goes to zero exponentially along
with its derivatives up to finite order as ¢ — 0 [28].

The open disk Dy flows forward in ﬁni~te time under the flow of —Vh. to a neigh-
borhood D of ri11, and the open disk Dy flows forward under the same flow to an
open set D), in M close to Dj. In fact, inside T}, the disks Dy and Dy get closer
under the forward time flow of —Vh.. The Morse-Bott-Smale transversality condition
implies that D th W§(Sk41), and hence Dy t W;(Sk41) if Dy is close enough to Dy
since the collection of maps transverse to a given submanifold is locally stable (see for
instance Theorem 5.16 of [4] or Theorem 3.2.1 of [17]). Thus, we can decrease € > 0,

if necessary, to obtain an open set D) C M; such that Dj W§(Sk+1). Moreover,
Th1 € D NWE(Sk11) # 0, and hence there exists a point 711 € Din W§(Skt1) such
that l);C rh;kﬂ W;(S]H_l)

For € > 0 sufficiently small, the poini Tr1 € W7 (Sk+1) flows forward in time under
the flow of —Vh. to a point qx11 € By since the tubular neighborhoods {Tj}é»:l
were chosen small enough so that the image of Tp1 doe_s not intersect thg closure
of any of the tubular neighborhoods other than 7" and T',,,. Moreover, D) C M;
flows forward in time under the flow of —Vh. to a submanifold of W}' (¢) that is
transverse to W7 (Sk+1) at gr41. Thus, we can find a manifold My, C My C W' (q)
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of dimension min{dim M;,dim Cj,,, + A;,,, — 1} that satisfies the above conditions.
This completes the induction. Note that if we have to decrease ¢ > 0 during the
induction, then we also have to modify My C W} (q). However, ¢ > 0 will only need
to be decreased a finite number of times. Hence, we can find a sufficiently small ¢ > 0

so that My C W' (q) exists forall k =1,...,n — 1.

To summarize, we have shown that for A > 0 and € > 0 sufficiently small there
exist submanifolds M, C Wy (q) and points g such that My W;(Sk) for all
k=1,...,n—1. Moreover, the point ¢ is the image under the forward time flow of
—Vh, of a point 7 € Wi (Sx) NW; (g) close to the point rj, where the image of x(t)

intersects the boundary of Tj, |,

M, € M, C - C M; € M; C Wi (q),
and every gradient flow line in M},_(q, p) whose image is sufficiently close to the image
of the cascade v € M“(q, p) intersects M*_; (and hence M for all k =1,...,n—1).
We can now repeat the above argument involving the Exchange Lemma for M, _; to
see that for A > 0 and ¢ > 0 sufficiently small we can find an open neighborhood
D!, C M*_, as close as we like to a small open neighborhood D', C W)
around the point r,, where the image of z,,(t) intersects the boundary of 7}, ,.

Now recall the assumption that
ME(C,Ciy o, iy, C) =2
is transverse and stratum transverse to Wy (¢) x W7 (p) (Definition 11). This implies
that
04
My(Jp1, Ci) — G

is transverse to Wi (p) at limy_oozn(t) € W3 (p), since the endpoint map 9, :
ML(Wi(a), Cy, ... Cj, oy, Ci) — € factors through 04+ My(J;_4,C;) — Cj and
is transverse to W} (p) at limy . 7, (t). Therefore, D;,_; M, Wi (W} (p)) as long as
D!, is sufficiently small. Thus if ¢ > 0 is sufficiently small, there exists a point
o € D N Wi (W} (p)) close to r, such that D!, s, Wi(W;(p)). The un-
parameterized gradient flow line of h. that passes through 7, is an element v;, €
M, (q,p) whose image is close to the image of the cascade in M¢(q, p) represented

by ((@k)1<k<n, (te)1<ken—1)-
Moreover, if A\, — A, = 1 then we can choose the Dj; small enough so that v €

./\/lc(q,p)Nis the unique element whose image intersects D) for all k = 1,...,n — 1.
Then if D!, is sufficiently close to D! _,, the gradient flow line of h. through 7, will

be the unique element of M,_ (g, p) whose image intersects D/,_, € M*_,. Thus for
Ay — Ap = 1 and € > 0 sufficiently small we have defined an injective map

M (q,p) — Mu.(q,p)

that sends a cascade v € M(q,p) to a gradient flow line 7. € M,_(q,p) such that
Im(+y) is close to Im(7.) in the Hausdorff topology. To see that this map is surjective,
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first recall that Lemma 23 says that if ¢ > 0 is sufficiently small, then the (finite)
number of elements in M,_(q,p) does not depend on € > 0. So, if the above map
were not surjective, we could pick a decreasing sequence {¢,}2; with lim, e, =0
and a sequence of elements v., € M;,_ (¢, p) such that ~., is not in the image of the
map

ME(q,p) — My (q,p) < M, (q,p)

for all v. Lemma 24 would then imply that there exists a subsequence of {Im(v.,)}52,
(which we still denote by {Im(~.,)}>2,) that converges to the image of some element
v € mc(q,p) = M*“(q,p) in the Hausdorff topology. But if we were to apply the
above construction to v, then for v sufficiently large we would get an element v;, €
M. (g, p) that intersects an open neighborhood D!, ; € M;_, near W (Cj, ). Since

o

the sequence {Im(~.,)}52, is converging to Im(v) we must have Im(v.,) N D’,_, # 0
for v sufficiently large by condition (I1), and since 7z, is the unique gradient flow line
in M_ (¢,p) whose image intersects D!, ,, we see that 7., = 7, is in the image of
the above map for v sufficiently large. This implies that the above map is surjective

and hence bijective.
O

5.3. Correspondence of chain complexes. Fix ¢ > 0 small enough so that the
conclusion of Theorem 25 holds. If we identify M¢(q, p) with M;_(q,p) x {0} using
Theorem 25, then

M (q,p) x [0,¢]

determines a trivial smooth cobordism between M¢(q, p) and M,,_(q, p) = Mp_(q,p) ¥
{e}. If we choose orientations for the unstable manifolds of h., then M,_(q,p) be-
comes an oriented zero dimensional manifold and there is an induced orientation on

M. (q,p) x [0,¢].

Definition 26. Let p,q € Cr(h.) with \; — A\, = 1, define an orientation on the
zero dimensional manifold M(q,p) by identifying it with the left hand boundary of

M. (q,p) x [0,¢].

An orientation on M¢(q,p) assigns a +1 or —1 to each point in M(q,p). This
determines an integer n°(q,p) = #Mq,p) € Z. Moreover, the one dimensional
manifold M,,_(q,p) x [0,¢] consists of finitely many closed intervals where the right
hand boundary is identified with M,_(q,p). Thus,

n°(q,p) = —nn.(q, p).

Definition 27. Define the k™ chain group C{(f) to be the free abelian group generated
by the critical points of total index k of the Morse-Smale functions f; for all j =
1,...,1, and define n°(q,p) to be the number of flow lines with cascades between a



CASCADES AND PERTURBED MORSE-BOTT FUNCTIONS 33

critical point q of total index k and a critical point p of total index k — 1 counted with
signs determined by the orientations. Let

ci(f) =P i)
k=0
and define a homomorphism 0f : C5(f) — C5_1(f) by
og)= Y. n(¢,p)p.

pe€Crr_1

Corollary 28 (Correspondence of Chain Complexes). For ¢ > 0 sufficiently small
we have C{(f) = Ck(he) and 0 = =0 for all k = 0,...,m, where Oy denotes the
Morse-Smale- Witten boundary operator determined by the Morse-Smale function h..
In particular, (CE(f),0°) is a chain complex whose homology is isomorphic to the
singular homology H.(M;Z).
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