

COMPACTIFIED SPACES OF HOLOMORPHIC CURVES IN COMPLEX GRASSMANN MANIFOLDS

DAVID E. HURTUBISE AND MARC D. SANDERS

ABSTRACT. In this paper we study the topology of a compactification of the space of holomorphic maps of fixed degree from $\mathbb{C}P^1$ into a finite dimensional complex Grassmann manifold. We show that there is a homotopy equivalence through a range, increasing with the degree, between these compact spaces and an infinite dimensional complex Grassmann manifold. These compact spaces form a direct system indexed by the degree, and the direct limit is homotopy equivalent to an infinite dimensional complex Grassmann manifold.

1. INTRODUCTION

In [15] Segal proved that the inclusion of the space of all holomorphic maps from $\mathbb{C}P^1$ to $\mathbb{C}P^k$ of degree $d \in \mathbb{N}$ into the space of all continuous maps from S^2 to $\mathbb{C}P^k$ of degree d is a homotopy equivalence through a range that increases with d . He proved this result for both based and unbased maps. Segal also proved a similar result in homology for spaces of unbased maps from a general Riemann surface into $\mathbb{C}P^k$. In [10] Kirwan extended Segal's result for homology to spaces of unbased maps from a Riemann surface into a finite dimensional complex Grassmann manifold, and in [2] Boyer, J.C. Hurtubise, Mann, and Milgram extended Segal's result in both homology and homotopy to maps from $\mathbb{C}P^1$ into an arbitrary flag manifold.

Segal's original work was motivated by the role that spaces of holomorphic maps play in control theory. A complex controllable and observable linear system is a system of differential equations of the form

$$\begin{aligned}\dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t)\end{aligned}$$

where A , B , and C are matrices with entries in \mathbb{C} [7]. Two controllable and observable linear systems (A, B, C) and (A', B', C') are said to be

1991 *Mathematics Subject Classification.* Primary: 55P10.

Key words and phrases. holomorphic curves, compactification, classifying space.

state space equivalent if there exists a matrix S such that

$$(A, B, C) \sim (SAS^{-1}, SB, CS^{-1}) = (A', B', C').$$

The space of based holomorphic maps from $\mathbb{C}P^1$ to $G_{n,n+k}(\mathbb{C})$ of degree d is in one-to-one correspondence with the set of state space equivalence classes of controllable and observable linear systems of McMillan degree d [13]. The homology of the space of based holomorphic maps from $\mathbb{C}P^1$ to $G_{n,n+k}(\mathbb{C})$ of degree d gives information about the complexity of the moduli space of controllable and observable linear systems of McMillan degree d , and it is this connection that motivated Mann and Milgram to compute the homology of the space of holomorphic maps of degree d from $\mathbb{C}P^1$ to $G_{n,n+k}(\mathbb{C})$ [12].

These mapping spaces also have compactifications which are of considerable interest in control theory, as well as symplectic geometry and gauge theory. In [3] Byrnes constructed a compactification of the space of based holomorphic maps of degree d from $\mathbb{C}P^1$ to $G_{n,n+k}(\mathbb{C})$ by embedding this mapping space into a large finite dimensional complex Grassmann manifold $G_{n,(d+1)(n+k)}(\mathbb{C})$ and then taking the closure of the mapping space inside $G_{n,(d+1)(n+k)}(\mathbb{C})$. Byrnes used this compactification to obtain new results on pole placement by degree one compensators, which are still considered “state of the art” [8]. In [11] Kirwan computed the Betti numbers of a compactification of the moduli space of stable vector bundles of fixed rank and fixed degree over a compact Riemann surface of genus $g \geq 2$. More recently, Bertram, Daskalopoulos, and Wentworth constructed three different compactifications of the space of holomorphic maps of fixed degree from a Riemann surface of genus g into a finite dimensional complex Grassmann manifold [1]. They then used these compactifications to provide a framework for calculating Donaldson-type Gromov invariants.

In this paper we study the topology of a compactification of the space of *unbased* holomorphic maps of degree d from $\mathbb{C}P^1$ to $G_{n,n+k}(\mathbb{C})$. This compactification is the analogue of Byrnes’ compactification. We prove that this compactification $\overline{\text{Hol}}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C}))$ is homotopy equivalent to the classifying space $BGL_n(\mathbb{C})$ through a range that increases with d . More specifically, we prove the following theorem.

Theorem 1. *There exists a map $\overline{\text{Hol}}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \rightarrow BGL_n(\mathbb{C})$ which induces isomorphisms in homotopy groups through dimension $\binom{(d+1)(n+k)}{n} - \binom{(d+1)(n-1)}{n} - 2$.*

Moreover, the compactified spaces form a direct system with respect to the degree and in the limit we obtain a homotopy equivalence.

Corollary 2. *The direct limit of*

$$\overline{Hol_1}(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \rightarrow \overline{Hol_2}(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \rightarrow \dots$$

is homotopy equivalent to $BGL_n(\mathbb{C})$.

2. THE COMPACTIFICATION

Let $M_{n,n+k}(\mathbb{C}[z])$ be the set of $n \times (n+k)$ matrices with entries in the polynomial ring $\mathbb{C}[z]$. The group $GL_n(\mathbb{C}[z])$, consisting of all $n \times n$ matrices with polynomial entries whose determinant is a non-zero constant, acts on $M_{n,n+k}(\mathbb{C}[z])$ by multiplication on the left.

$$GL_n(\mathbb{C}[z]) \times M_{n,n+k}(\mathbb{C}[z]) \rightarrow M_{n,n+k}(\mathbb{C}[z])$$

Let $P_{n,n+k}(\mathbb{C}[z])$ denote the space of polynomial maps from \mathbb{C} to the Stiefel manifold $V_{n,n+k}(\mathbb{C})$. A matrix in $M_{n,n+k}(\mathbb{C}[z])$ has $\binom{n+k}{n}$ minors of size $n \times n$. The determinants of these minors are in $\mathbb{C}[z]$. $P_{n,n+k}(\mathbb{C}[z])$ is the subspace of $M_{n,n+k}(\mathbb{C}[z])$ consisting of those matrices such that these $\binom{n+k}{n}$ polynomials do not all have a root in common. Since multiplying an element of $M_{n,n+k}(\mathbb{C}[z])$ on the left by an element of $GL_n(\mathbb{C}[z])$ can only change the determinants of the $n \times n$ minors by an element of $\mathbb{C} \setminus \{0\}$, the above action restricts to an action on $P_{n,n+k}(\mathbb{C}[z])$.

$$GL_n(\mathbb{C}[z]) \times P_{n,n+k}(\mathbb{C}[z]) \rightarrow P_{n,n+k}(\mathbb{C}[z])$$

Moreover, this action restricts to the subspace $P_{n,n+k}^d(\mathbb{C}[z])$ consisting of those matrices whose $n \times n$ determinants are all of degree less than or equal to degree d with at least one determinant having degree d .

The following result is well known [9] [12].

Theorem 3. *The space of holomorphic maps of degree d from $\mathbb{C}P^1$ to the complex Grassmann manifold $G_{n,n+k}(\mathbb{C})$ with the compact open topology is homeomorphic to $P_{n,n+k}^d(\mathbb{C}[z])/GL_n(\mathbb{C}[z])$ topologized with the quotient topology.*

$$Hol_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \approx P_{n,n+k}^d(\mathbb{C}[z])/GL_n(\mathbb{C}[z])$$

Note that when $n = 1$ this theorem says that there exists an embedding of the mapping space $Hol_d(\mathbb{C}P^1, \mathbb{C}P^k)$ into $\mathbb{C}P^{(d+1)(1+k)-1}$ because $GL_1(\mathbb{C}[z]) = \mathbb{C} \setminus \{0\}$. When $n > 1$ a similar embedding exists of $Hol_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C}))$ into $G_{n,(d+1)(n+k)}(\mathbb{C})$. To define this embedding we will first describe a normal form for matrices in the quotient space $P_{n,n+k}^d(\mathbb{C}[z])/GL_n(\mathbb{C}[z])$.

The action

$$GL_n(\mathbb{C}[z]) \times M_{n,n+k}(\mathbb{C}[z]) \rightarrow M_{n,n+k}(\mathbb{C}[z])$$

corresponds to polynomial row operations on an element of $M_{n,n+k}(\mathbb{C}[z])$. That is, by multiplying an element of $M_{n,n+k}(\mathbb{C}[z])$ on the left by an element of $GL_n(\mathbb{C}[z])$ we can interchange rows, multiply a row by a non-zero constant, or add a polynomial multiple of one row to another row [5]. Let $(p_{ij}(z)) \in M_{n,n+k}(\mathbb{C}[z])$. By multiplying $(p_{ij}(z))$ on the left by elements of $GL_n(\mathbb{C}[z])$ we can put $(p_{ij}(z))$ into the following polynomial reduced row echelon form:

$$\begin{pmatrix} p_{11} & \cdots & p_{1i_1} & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ p_{21} & \cdots & p_{2i_1} & p_{2i_1+1} & \cdots & p_{2i_2} & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots & & \vdots \\ p_{n1} & \cdots & p_{ni_1} & p_{ni_1+1} & \cdots & p_{ni_2} & p_{ni_2+1} & \cdots & p_{ni_n} & 0 & \cdots & 0 \end{pmatrix}$$

where i_1, \dots, i_n is a strictly increasing sequence of integers between 1 and $n+k$, the rightmost polynomial in each row is a non-zero monic polynomial, and the polynomials below each of $p_{1i_1}, p_{2i_2}, \dots, p_{ni_n}$ all have degree strictly less than the degree of $p_{1i_1}, p_{2i_2}, \dots, p_{ni_n}$ respectively. By considering the possible polynomial row operations induced by the action of $GL_n(\mathbb{C}[z])$ on $M_{n,n+k}(\mathbb{C}[z])$ it is easy to see that each orbit contains a unique matrix in polynomial reduced row echelon form.

It is well known that $P_{n,n+k}^d(\mathbb{C}[z])/GL_n(\mathbb{C}[z])$ is a complex analytic manifold with local coordinate charts given by the coefficients of the polynomials of a matrix in reduced row echelon form [4] [12]. The transition functions are given by multiplying by elements of $GL_n(\mathbb{C}[z])$ which can be solved for using Cramer's Rule. This complex analytic structure on $P_{n,n+k}^d(\mathbb{C}[z])/GL_n(\mathbb{C}[z])$ is defined analogous to the complex analytic structure on $V_{n,(d+1)(n+k)}(\mathbb{C})/GL_n(\mathbb{C}) = G_{n,(d+1)(n+k)}(\mathbb{C})$ [6]. In both cases the topology defined by these local coordinate charts agrees with the quotient topology.

Let $d \in \mathbb{N}$ and let $\mathbb{C}^d[z]$ denote the vector space of polynomials of degree less than or equal to d . It is easy to show that a matrix $M \in P_{n,n+k}^d(\mathbb{C}[z])$ which is in polynomial reduced row echelon form has entries in $\mathbb{C}^d[z]$ and therefore has rows that can be thought of as elements of the complex vector space

$$\underbrace{\mathbb{C}^d[z] \times \cdots \times \mathbb{C}^d[z]}_{n+k} \approx \mathbb{C}^{(d+1)(n+k)}.$$

Since $\text{Hol}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \approx P_{n,n+k}^d(\mathbb{C}[z])/GL_n(\mathbb{C}[z])$ we can define a map

$$\phi : \text{Hol}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \rightarrow G_{n,(d+1)(n+k)}(\mathbb{C})$$

by sending a holomorphic curve σ to the plane in $\mathbb{C}^{(d+1)(n+k)}$ spanned by the rows of the unique polynomial reduced row echelon form matrix in the orbit corresponding to σ . The above observations concerning the complex analytic structures on $P_{n,n+k}^d(\mathbb{C}[z])/GL_n(\mathbb{C}[z])$ and $G_{n,(d+1)(n+k)}(\mathbb{C})$ make the proof of the following theorem immediate.

Theorem 4. ϕ is a complex analytic embedding.

To compactify $\text{Hol}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C}))$ we take the closure of this space embedded in $G_{n,(d+1)(n+k)}(\mathbb{C})$.

Definition 5.

$$\overline{\text{Hol}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C}))} = \overline{\phi(\text{Hol}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})))} \subseteq G_{n,(d+1)(n+k)}(\mathbb{C})$$

Note that points in $G_{n,(d+1)(n+k)}(\mathbb{C})$ can be represented by elements in the vector space $M_{n,n+k}(\mathbb{C}[z])$ (modulo the action of $GL_n(\mathbb{C})$) and so it makes sense to talk about the $n \times n$ determinants computed by treating each polynomial as a single entry in the matrix. We will refer to these $\binom{n+k}{n}$ determinants as the polynomial determinants of an element of $G_{n,(d+1)(n+k)}(\mathbb{C})$. They are well defined up to an element of $\mathbb{C} \setminus \{0\}$.

Theorem 6. $\overline{\text{Hol}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C}))}$ is the set of points in the closure of the Schubert cell $e((d+1)(1+k), \dots, (d+1)(n+k))$ in the complex Grassmann manifold $G_{n,(d+1)(n+k)}(\mathbb{C})$ whose $n \times n$ polynomial determinants are all of degree less than or equal to d . When $n = 1$ we have the following.

$$\overline{\text{Hol}_d(\mathbb{C}P^1, \mathbb{C}P^k)} = \mathbb{C}P^{(d+1)(1+k)-1}$$

Proof:

It is clear that a matrix in $P_{n,n+k}^d(\mathbb{C}[z])$ which is in polynomial reduced row echelon form has rows that span a plane in the closure of the Schubert cell $e((d+1)(1+k), \dots, (d+1)(n+k))$ (Our notation for Schubert cells follows [14] Section 6.) Therefore,

$$\phi(\text{Hol}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \subseteq \overline{e((d+1)(1+k), \dots, (d+1)(n+k))}.$$

Since the $n \times n$ polynomial determinants of an element of $M_{n,n+k}(\mathbb{C}[z])$ can only have finitely many zeros in common, $P_{n,n+k}^d(\mathbb{C}[z])$ is dense in $M_{n,n+k}(\mathbb{C}[z])$. Hence $\phi(\text{Hol}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})))$ is dense in the set of points in the closure of $e((d+1)(1+k), \dots, (d+1)(n+k))$ whose $n \times n$ polynomial determinants are all of degree less than or equal to d .

For the case $n = 1$ simply note that the Schubert cell $e((d+1)(1+k))$ is dense in $\mathbb{C}P^{(d+1)(1+k)-1}$ and the condition on the $n \times n$ polynomial determinants is vacuous when $n = 1$.

□

3. THE HOMOTOPY GROUPS OF $\overline{\text{Hol}}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C}))$

In this section we prove that $\overline{\text{Hol}}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C}))$ and $BGL_n(\mathbb{C})$ are homotopy equivalent through a range that increases with d .

Pick any $d \in \mathbb{N}$ and recall that $\mathbb{C}^d[z]$ is the vector space of all complex polynomials of degree less than or equal to d and $M_{n,n+k}(\mathbb{C}^d[z])$ is the set of all $n \times (n+k)$ matrices with elements in $\mathbb{C}^d[z] \approx \mathbb{C}^{(d+1)}$. Let $M_{n,n+k}^d(\mathbb{C}^d[z])$ denote the subset of $M_{n,n+k}(\mathbb{C}^d[z])$ consisting of those matrices whose $n \times n$ polynomial determinants are all contained in $\mathbb{C}^d[z]$. The condition for an element $\alpha \in M_{n,n+k}(\mathbb{C}^d[z])$ to be in $M_{n,n+k}^d(\mathbb{C}^d[z])$ is an algebraic condition given by $\binom{n+k}{n}(dn-d)$ polynomial equations in the coefficients of the polynomial entries of α . Note that each $\alpha \in M_{n,n+k}^d(\mathbb{C}^d[z])$ can be written as

$$\alpha = (\alpha_1 \ \alpha_2 \ \cdots \ \alpha_{n+k})$$

where each α_i can be thought of as an element of $M_{n,d+1}(\mathbb{C})$. Let $C_{n,n+k}^d$ be the collection of those $\alpha \in M_{n,n+k}^d(\mathbb{C}^d[z])$ that satisfy the following condition: all $j \times j$ complex determinants of the matrix

$$(\alpha_{n+k+2-j} \ \alpha_{n+k+2-j+1} \ \cdots \ \alpha_{n+k}) \in M_{n,(d+1)(j-1)}(\mathbb{C})$$

are zero for all $2 \leq j \leq n$. Thus $C_{n,n+k}^d$ is a subset of $M_{n,n+k}^d(\mathbb{C}^d[z])$ determined by a finite set of polynomial equations in the coefficients of the polynomial entries. By considering the standard basis for a point in a Schubert cell (see [14] Section 6) and standard complex row reduction techniques it is not hard to see that the preimage of

$$\overline{\text{Hol}}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \subseteq G_{n,(d+1)(n+k)}(\mathbb{C})$$

under the quotient map

$$\pi : V_{n,(d+1)(n+k)}(\mathbb{C}) \rightarrow G_{n,(d+1)(n+k)}(\mathbb{C}).$$

is $C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C})$.

Lemma 7. $C_{n,n+k}^d$ is contractible.

Proof:

Note that for $c \in \mathbb{C}$ and $\alpha \in C_{n,n+k}^d$ we have $c\alpha \in C_{n,n+k}^d$. So, for $t \in [0, 1]$ we can define $F_t : C_{n,n+k}^d \rightarrow C_{n,n+k}^d$ by $F_t(\alpha) = t\alpha$. This gives the desired homotopy, and we see that the space contracts to the zero matrix.

□

Lemma 8.

$$H_j(C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C})) = 0$$

for all $j < \binom{(d+1)(n+k)}{n} - \binom{(d+1)(n-1)}{n} - 1$.

Proof:

Let D be the subset of $C_{n,n+k}^d$ consisting of those matrices whose rows are linearly dependent as elements of the complex vector space $\mathbb{C}^{(d+1)(n+k)}$.

$$C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C}) = C_{n,n+k}^d - D$$

D is the closed analytic subvariety of $C_{n,n+k}^d$ consisting of those matrices whose $n \times n$ complex minors are all zero. Since all the $n \times n$ minors of the rightmost $(d+1)(n-1)$ columns of a matrix in $C_{n,n+k}^d$ are already zero, D is the intersection of $C_{n,n+k}^d$ with the zero set of an additional $\binom{(d+1)(n+k)}{n} - \binom{(d+1)(n-1)}{n}$ polynomials. By a result of F. Kirwan, [10] Theorem 6.1, it follows that

$$H_j(C_{n,n+k}^d - D) = H_j(C_{n,n+k}^d) = 0$$

for all $j < \binom{(d+1)(n+k)}{n} - \binom{(d+1)(n-1)}{n} - 1$.

□

Lemma 9. $C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C})$ is simply connected. Hence,

$$\pi_j(C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C})) = 0$$

for all $j < \binom{(d+1)(n+k)}{n} - \binom{(d+1)(n-1)}{n} - 1$.

Proof:

Fix an ordering on the $\binom{(d+1)(n+k)}{n}$ complex $n \times n$ minors of the matrices in $C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C})$ and let I_1, \dots, I_m be the indices in this ordering corresponding to those minors such that there exists a matrix in $C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C})$ whose I_j th minor has non-zero determinant. For every $1 \leq j \leq m$ let U_{I_j} be the collection of those matrices in $C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C})$ whose I_j th $n \times n$ minor has non-zero determinant, union an additional matrix M . M is chosen to be a matrix with all entries zero except for one $n \times n$ complex minor equal to the identity matrix in columns corresponding to the constant terms of the polynomial entries.

Any loop in U_{I_j} can be contracted to M . One way of contracting such a loop is to first perturb the loop so that it does not go through M , then contract all the entries outside the I_j th minor to zero, and then contract the entries in the I_j th minor to zero while continuously deforming the other $n \times n$ complex minor to the identity matrix. Therefore, $\pi_1(U_{I_j}) = 0$ for all $1 \leq j \leq m$.

It is easy to see that $U_{I_1} \cap U_{I_2}$ is path connected and hence by the Seifert-Van Kampen Theorem $\pi_1(U_{I_1} \cup U_{I_2}) = 0$. By considering

$$(U_{I_1} \cup U_{I_2}) \cap U_{I_3} = (U_{I_1} \cap U_{I_3}) \cup (U_{I_2} \cap U_{I_3})$$

one can easily see that $(U_{I_1} \cup U_{I_2}) \cap U_{I_3}$ is path connected and hence $\pi_1(U_{I_1} \cup U_{I_2} \cup U_{I_3}) = 0$. Continuing this process one sees that

$$\pi_1(U_{I_1} \cup \cdots \cup U_{I_m}) = \pi_1(C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C})) = 0.$$

The last statement follows from the Hurewicz Theorem and Lemma 8. \square

Theorem 10. *There exists a map $\overline{\text{Hol}}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \rightarrow BGL_n(\mathbb{C})$ which induces isomorphisms in homotopy groups through dimension $\binom{(d+1)(n+k)}{n} - \binom{(d+1)(n-1)}{n} - 2$.*

Proof:

The principle bundle

$$\begin{array}{ccc} GL_n(\mathbb{C}) & \longrightarrow & C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C}) \\ & & \downarrow \pi \\ & & \overline{\text{Hol}}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \end{array}$$

induces the following fibration.

$$\begin{array}{ccc} C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C}) & \xrightarrow{\pi} & \overline{\text{Hol}}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \\ & & \downarrow \\ & & BGL_n(\mathbb{C}) \end{array}$$

By the previous lemma $\pi_j(C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C})) = 0$ for all $j < \binom{(d+1)(n+k)}{n} - \binom{(d+1)(n-1)}{n} - 1$ and hence the map

$$\overline{\text{Hol}}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \rightarrow BGL_n(\mathbb{C})$$

induces isomorphisms in homotopy groups through the same range. \square

4. THE DIRECT LIMIT OF THE COMPACTIFIED SPACES

The inclusion

$$M_{n,n+k}(\mathbb{C}^d[z]) \rightarrow M_{n,n+k}(\mathbb{C}^{d+1}[z])$$

induces an inclusion of Stiefel manifolds

$$V_{n,(d+1)(n+k)}(\mathbb{C}) \rightarrow V_{n,(d+2)(n+k)}(\mathbb{C})$$

and Grassmann manifolds

$$G_{n,(d+1)(n+k)}(\mathbb{C}) \rightarrow G_{n,(d+2)(n+k)}(\mathbb{C})$$

which in turn induces an inclusion

$$\overline{\text{Hol}}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \rightarrow \overline{\text{Hol}}_{d+1}(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C}))$$

by Theorem 6. These inclusion maps determine the following direct system.

$$\overline{\text{Hol}}_1(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \rightarrow \overline{\text{Hol}}_2(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \rightarrow \dots$$

The results of the previous section show that the homotopy direct limit of this system is homotopy equivalent to $BGL_n(\mathbb{C})$. We now give a relatively quick self-contained proof that the ordinary direct limit is homotopy equivalent to $BGL_n(\mathbb{C})$.

Let $\widetilde{\text{Hol}}_d$ denote the preimage of

$$\overline{\text{Hol}}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \subseteq G_{n,(d+1)(n+k)}(\mathbb{C})$$

under the quotient map

$$\pi : V_{n,(d+1)(n+k)}(\mathbb{C}) \rightarrow G_{n,(d+1)(n+k)}(\mathbb{C}).$$

In other words, $\widetilde{\text{Hol}}_d$ is $C_{n,n+k}^d \cap V_{n,(d+1)(n+k)}(\mathbb{C})$ from the previous section.

Lemma 11. *The direct limit of*

$$\widetilde{\text{Hol}}_1 \rightarrow \widetilde{\text{Hol}}_2 \rightarrow \widetilde{\text{Hol}}_3 \rightarrow \dots$$

is contractible.

Proof:

It suffices to show that the homotopy groups of the direct limit are all zero. Pick any $d \in \mathbb{N}$. The inclusion

$$i_{d,1} : \widetilde{\text{Hol}}_d \rightarrow \widetilde{\text{Hol}}_{d+1}$$

can be described as follows. An element $\alpha \in \widetilde{\text{Hol}}_d \subseteq V_{(d+1)(n+k)}(\mathbb{C})$ is an $n \times (d+1)(n+k)$ matrix. For each $1 \leq i \leq n+k$ let α_i denote the i th $n \times (d+1)$ block.

$$\alpha = (\alpha_1 \ \alpha_2 \ \dots \ \alpha_{n+k})$$

$i_{d,1}(\alpha)$ is the matrix obtained by placing a column of zeroes in front of each α_i .

$$i_{d,1}(\alpha) = (0_{n \times 1} \alpha_1 \ 0_{n \times 1} \alpha_2 \ \dots \ 0_{n \times 1} \alpha_{n+k})$$

The inclusion

$$i_{d,n^2+nd} : \widetilde{\text{Hol}}_d \rightarrow \widetilde{\text{Hol}}_{d+n^2+nd}$$

is the composition $i_{d,n^2+nd} = i_{d+n^2+nd-1,1} \circ \cdots \circ i_{d,1}$. Thus,

$$i_{d,n^2+nd}(\alpha) = (0_{n \times (n^2+nd)} \alpha_1 \ 0_{n \times (n^2+nd)} \alpha_2 \ \cdots \ 0_{n \times (n^2+nd)} \alpha_{n+k})$$

where $0_{n \times (n^2+nd)}$ is the $n \times (n^2 + nd)$ zero matrix. The map

$$H_{d,n^2+nd} : \widetilde{\text{Hol}}_d \times [0, 1] \rightarrow \widetilde{\text{Hol}}_{d+n^2+nd}$$

defined by $H_{d,n^2+nd}(\alpha, t) =$

$$(0_{n \times n^2+nd-n} (1-t) I_{n \times n} t \alpha_1 \ 0_{n \times (n^2+nd)} t \alpha_2 \ \cdots \ 0_{n \times (n^2+nd)} t \alpha_{n+k})$$

where $I_{n \times n}$ is the $n \times n$ identity matrix is a homotopy from i_{d,n^2+nd} to a constant map. Therefore the homotopy groups of the direct limit are all zero.

□

Theorem 12.

$$\varinjlim_d \overline{\text{Hol}}_d(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \simeq BGL_n(\mathbb{C})$$

Proof:

The group action of $GL_n(\mathbb{C})$ on $\widetilde{\text{Hol}}_d$ commutes with the inclusion maps. Therefore the quotient of the direct limit of

$$\widetilde{\text{Hol}}_1 \rightarrow \widetilde{\text{Hol}}_2 \rightarrow \cdots$$

is the direct limit of the quotient spaces

$$\overline{\text{Hol}}_1(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \rightarrow \overline{\text{Hol}}_2(\mathbb{C}P^1, G_{n,n+k}(\mathbb{C})) \rightarrow \cdots$$

Since $GL_n(\mathbb{C})$ acts freely on the contractible space $\varinjlim_d \widetilde{\text{Hol}}_d$, the quotient space of this direct limit is homotopy equivalent to $BGL_n(\mathbb{C})$.

□

REFERENCES

- [1] A. Bertram, G. Daskalopoulos, and R. Wentworth. Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians. *J. Amer. Math. Soc.*, 9(2):529–571, 1996.
- [2] C.P. Boyer, J.C. Hurtubise, B.M. Mann, and R.J. Milgram. The topology of the space of rational maps into generalized flag manifolds. *Acta Math.*, 173:61–101, 1994.
- [3] C.I. Byrnes. On compactifications of spaces of systems and dynamic compensation. In *Proceedings of the 22nd IEEE Conference on Decision and Control*, pages 889–894, 1983.
- [4] J.M.C. Clark. The consistent selection of parameterizations in system identification. In *Proc. Joint Automatic Control Conference*, pages 576–580, 1976.

- [5] F.R. Gantmacher. *The Theory of Matrices Vol. 1*. Chelsea Publishing Company, New York, 1960.
- [6] P. Griffiths and J. Harris. *Principles of Algebraic Geometry*. John Wiley and Sons, New York, 1978.
- [7] U. Helmke. *The cohomology of moduli spaces of linear dynamical systems*. Regensburger Mathematische Schriften, Habilitationsschrift Regensburg University, 1992.
- [8] U. Helmke. A compactification of the space of rational transfer functions by singular systems. *J. Math. Systems Estim. Control*, 3(4):459–472, 1993.
- [9] D.E. Hurtubise. Spaces of holomorphic maps from $\mathbb{C}P^1$ to complex Grassmann manifolds. In A. Banyaga et. al., editor, *Topics in Low Dimensional Topology*, pages 101–113. World Scientific, 1999.
- [10] F. Kirwan. On spaces of maps from Riemann surfaces to Grassmannians and applications to the cohomology of moduli of vector bundles. *Ark. Mat.*, 24(2):221–275, 1986.
- [11] F. Kirwan. On the homology of compactifications of moduli spaces of vector bundles over a Riemann surface. *Proc. London Math. Soc.*, 53(3):237–266, 1986.
- [12] B. Mann and R.J. Milgram. Some spaces of holomorphic maps to complex Grassmann manifolds. *J. Differential Geom.*, 33(2):301–324, 1991.
- [13] C. Martin and R. Hermann. Applications of algebraic geometry to systems theory: The McMillan degree and Kronecker indices of transfer functions as topological and holomorphic system invariants. *SIAM J. Control Optim.*, 16(5):743–755, 1978.
- [14] J.W. Milnor and J.D. Stasheff. *Characteristic Classes*. Princeton University Press, Princeton, New Jersey, 1974.
- [15] G. Segal. The topology of spaces of rational functions. *Acta Math.*, 143:39–72, 1979.

DEPARTMENT OF MATHEMATICS, PENN STATE UNIVERSITY – THE ALTOONA COLLEGE, 101B EICHE, ALTOONA, PA 16601-3760
E-mail address: hurtubis@math.psu.edu

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CA 94305
E-mail address: sanders@csli.stanford.edu