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Abstract. We define the symplectic displacement energy of a

non-empty subset of a compact symplectic manifold as the infi-

mum of the Hofer-like norm [5] of symplectic diffeomorphisms that

displace the set. We show that this energy (like the usual dis-

placement energy defined using Hamiltonian diffeomorphisms) is

a strictly positive number on sets with non-empty interior. As a

consequence we prove a result justifying the introduction of the

notion of strong symplectic homeomorphisms [4].

1. Statement of results

In [14], Hofer defined a norm ‖ · ‖H on the group Ham(M,ω) of com-

pactly supported Hamiltonian diffeomorphisms of a symplectic mani-

fold (M,ω).

For a non-empty subset A ⊂ M , he introduced the notion of the

displacement energy e(A) of A:

e(A) = inf{‖φ‖H | φ ∈ Ham(M,ω), φ(A) ∩A = ∅}.

The displacement energy is defined to be +∞ if no compactly sup-

ported Hamiltonian diffeomorphism displaces A.

Eliashberg and Polterovich [8] proved the following result.

Theorem 1. For any non-empty open subset A of M , e(A) is a strictly

positive number.

It is easy to see that if A and B are non-empty subsets of M such

that A ⊂ B, then e(A) ≤ e(B), and that e is a symplectic invariant.

That is,

e(f(A)) = e(A)
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for all f ∈ Symp(M,ω) = {φ ∈ Diff(M) | φ∗ω = ω}. This follows from

the fact that ‖f ◦ φ ◦ f−1‖H = ‖φ‖H.

In [5], a Hofer-like metric ‖ · ‖HL was constructed on the group

Symp0(M,ω) of all symplectic diffeomorphisms of a compact symplec-

tic manifold (M,ω) that are isotopic to the identity. It was proved

recently by Buss and Leclercq [7] that the restriction of ‖ · ‖HL to

Ham(M,ω) is a metric equivalent to the Hofer metric.

Let us now propose the following definition.

Definition 2. The symplectic displacement energy es(A) of a non-

empty subset A ⊂M is defined to be:

es(A) = inf{‖h‖HL | h ∈ Symp0(M,ω), h(A) ∩A = ∅}

if some element of Symp0(M,ω) displaces A, and +∞ if no element of

Symp0(M,ω) displaces A.

Clearly, if A and B are non-empty subsets of M such that A ⊂ B, then

es(A) ≤ es(B).

The goal of this paper is to prove the following result.

Theorem 3. For any closed symplectic manifold (M,ω), the symplectic

displacement energy of any subset A ⊂ M with non-empty interior

satisfies es(A) > 0.

2. The Hofer norm ‖ · ‖H and the Hofer-like norm ‖ · ‖HL

2.1. Symp0(M, ω) and Ham(M, ω). Let Iso(M,ω) be the set of all

compactly supported symplectic isotopies of a symplectic manifold

(M,ω). A compactly supported symplectic isotopy Φ ∈ Iso(M,ω) is a

smooth map Φ : M× [0, 1] →M such that for all t ∈ [0, 1], if we denote

by φt(x) = Φ(x, t), then φt ∈ Symp(M,ω) is a symplectic diffeomor-

phism with compact support, and φ0 = id. We denote by Symp0(M,ω)

the set of all time-1 maps of compactly supported symplectic isotopies.

Isotopies Φ = {φt} are in one-to-one correspondence with families of

smooth vector fields {φ̇t} defined by

φ̇t(x) =
dφt

dt
(φ−1

t (x)).
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If Φ ∈ Iso(M,ω), then the one-form i(φ̇t)ω such that

i(φ̇t)ω(X) = ω(φ̇t, X)

for all vector fields X is closed. If for all t the 1-form i(φ̇t)ω is exact,

that is, there exists a smooth function F : M × [0, 1] → R, F (x, t) =

Ft(x), with compact supports such that i(φ̇t)ω = dFt, then the isotopy

Φ is called a Hamiltonian isotopy and will be denoted by ΦF . We

define the group Ham(M,ω) of Hamiltonian diffeomorphisms as the

set of time-one maps of Hamiltonian isotopies.

For each Φ = {φt} ∈ Iso(M,ω), the mapping

Φ 7→

[
∫ 1

0

(i(φ̇t)ω)dt

]

,

where [α] denotes the cohomology class of a closed form α, induces a

well defined map S̃ from the universal cover of Symp0(M,ω) to the first

de Rham cohomology group H1(M,R). This map is called the Cal-

abi invariant (or the flux). It is a surjective group homomorphism.

Let Γ ⊂ H1(M,R) be the image by S̃ of the fundamental group of

Symp0(M,ω). We then get a surjective homomorphism

S : Symp0(M,ω) → H1(M,R)/Γ.

The kernel of this homomorphism is the group Ham(M,ω) [2, 3].

2.2. The Hofer norm. Hofer [14] defined the length lH of a Hamil-

tonian isotopy ΦF as

lH(ΦF ) =

∫ 1

0

(oscFt(x)) dt,

where the oscillation of a function f : M → R is

osc (f) = max
x∈M

(f(x)) − min
x∈M

(f(x)).

For φ ∈ Ham(M,ω), the Hofer norm of φ is

‖φ‖H = inf{lH(ΦF )},

where the infimum is taken over all Hamiltonian isotopies ΦF with

time-one map equal to φ, i.e. φF,1 = φ.



4 AUGUSTIN BANYAGA†, DAVID E. HURTUBISE, AND PETER SPAETH

The Hofer distance dH(φ, ψ) between two Hamiltonian diffeomor-

phisms φ and ψ is

dH(φ, ψ) = ‖φ ◦ ψ−1‖H .

This distance is bi-invariant. This property was used in [8] to prove

Theorem 1.

2.3. The Hofer-like norm. Now let (M,ω) be a compact symplectic

manifold without boundary, on which we fix a Riemannian metric g.

For each Φ = {φt} ∈ Iso(M,ω), we consider the Hodge decomposition

[19] of the 1-form i(φ̇t)ω as

i(φ̇t)ω = Ht + dut,

where Ht is a harmonic 1-form. The forms Ht and ut are unique and

depend smoothly on t.

For Φ ∈ Iso(M,ω), define

l0(Φ) =

∫ 1

0

(|Ht| + osc (ut(x)) dt,

where |Ht| is a norm on the finite dimensional vector space of harmonic

1-forms. We let

l(φ) =
1

2
(l0(Φ) + l0(Φ

−1)),

where Φ−1 = {φ−1
t }.

For each φ ∈ Symp0(M,ω), let

‖φ‖HL = inf{l(Φ)},

where the infimum is taken over all symplectic isotopies Φ = {φt} with

φ1 = φ.

The following result was proved in [5].

Theorem 4. For any closed symplectic manifold (M,ω), ‖ · ‖HL is a

norm on Symp0(M,ω).

Remark 5. The norm ‖·‖HL depends on the choice of the Riemannian

metric g onM and the choice of the norm |·| on the space of harmonic 1-

forms. However, different choices for g and | · | yield equivalent metrics.

See Section 3 of [5] for more details.
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2.4. Some equivalence properties. Let (M,ω) be a compact sym-

plectic manifold. Buss and Leclercq have proved:

Theorem 6. [7] The restriction of the Hofer-like norm ‖ · ‖HL to

Ham(M,ω) is equivalent to the Hofer norm ‖ · ‖H .

We now prove the following.

Theorem 7. Let φ ∈ Symp0(M,ω). The norm

h 7→ ‖φ ◦ h ◦ φ−1‖HL

on Symp0(M,ω) is equivalent to the norm ‖ · ‖HL.

Remark 8. We owe the statement of the above theorem to the referee

of a previous version of this paper.

Proof. Let {ht} be an isotopy in Symp0(M,ω) from h to the identity,

and let

i(ḣt)ω = Ht + dut

be the Hodge decomposition of i(ḣt)ω. Then Ψ = {φ ◦ ht ◦ φ−1} is an

isotopy from φ ◦ h ◦ φ−1 to the identity and Ψ̇t = φ∗ḣt. Therefore,

i(Ψ̇t)ω = (φ−1)∗(i(ḣt)φ
∗ω) = (φ−1)∗(Ht+dut) = (φ−1)∗Ht+d(ut◦φ

−1).

Let {φ−1
s } be an isotopy from φ−1 to the identity, and let LX =

iXd + diX be the Lie derivative in the direction X. Then

d

ds
((φ−1

s )∗Ht) = (φ−1
s )∗(Lφ̇−1

s

Ht) = d((φ−1
s )∗i(φ̇−1

s )Ht),

where φ̇−1
t = ( d

dt
φ−1

t ) ◦ φt. Integrating from 0 to 1 we get

(φ−1)∗Ht −Ht = dαt

where

αt =

∫ 1

0

((φ−1
s )∗i(φ̇−1

s )Ht) ds.

Therefore,

i(Ψ̇t)ω = Ht + d(ut ◦ φ
−1 + αt).
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Hence,

l0(Ψ) =

∫ 1

0

(

|Ht| + osc (ut ◦ φ
−1 + αt)

)

dt

≤

∫ 1

0

(

|Ht| + osc (ut ◦ φ
−1)

)

dt+

∫ 1

0

osc (αt) dt

=

∫ 1

0

(|Ht| + osc (ut)) dt+

∫ 1

0

osc (αt) dt

= l0({ht}) +K

where

K =

∫ 1

0

osc (αt) dt.

Let us now do the same calculation for Ψ−1 = {φ ◦ h−1
t ◦ φ−1}.

Since ḣ−1
t satisfies ḣ−1

t = −(h−1
t )∗ḣt, the cohomology classes of i(ḣt)ω

and i(ḣ−1
t )ω are of opposite sign. Since the Hodge decomposition is

unique and the harmonic part of the first form is Ht, the harmonic

part of the second form is −Ht. Therefore, there is a smooth family of

functions vt such that the Hodge decomposition for i(ḣ−1
t )ω is

i(ḣ−1
t )ω = −Ht + dvt.

The same calculation shows

i(Ψ̇−1
t )ω = −Ht + d(vt ◦ φ

−1 − αt).

Hence,

l0(Ψ
−1) ≤ l0({h

−1
t }) +K.

We will now estimate K =
∫ 1

0
osc (αt) dt. Fix an isotopy {φ−1

s } from

φ−1 to the identity. Consider the continuous linear map

L{φ−1
s } : H1(M, g) → C∞(M)

from the finite dimensional vector space of harmonic 1-forms given by

L{φ−1
s }(θ) =

∫ 1

0

((φ−1
s )∗i(φ̇−1

s )θ) ds.
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Let ν ≥ 0 be the norm of L{φ−1
s } where the norm on H1(M, g) is

defined by the metric g and C∞(M) is given the sup norm. Then

|L{φ−1

s
}(θ)| ≤ ν|θ|. In our case αt = L{φ−1

s
}(Ht). Therefore,

|αt| ≤ ν|Ht|

and

osc (αt) ≤ 2|αt| ≤ 2ν|Ht|.

This implies

osc (αt) ≤ 2ν (|Ht| + osc (ut)) and osc (αt) ≤ 2ν (|Ht| + osc (vt)) .

Hence,

K =

∫ 1

0

osc (αt) dt ≤ 2ν l0({ht}),

and

K =

∫ 1

0

osc (αt) dt ≤ 2ν l0({h
−1
t }).

Now recall that,

l0(Ψ) ≤ l0({ht}) +K and l0(Ψ
−1) ≤ l0({h

−1
t }) +K.

Therefore,

l(Ψ) =
1

2

(

l0(Ψ) + l0(Ψ
−1)

)

≤
1

2

(

l0({ht}) + 2ν l0({ht}) + l0({h
−1
t }) + 2ν l0({h

−1
t })

)

≤ (2ν + 1)l({ht}).

Taking the infimum over the set I(h) of all symplectic isotopies from

h to the identity we get

inf
I(h)

l(Ψ) ≤ (2ν + 1)‖h‖HL,

and since

‖φ ◦ h ◦ φ−1‖HL ≤ inf
I(h)

l(Ψ)

we get

‖φ ◦ h ◦ φ−1‖HL ≤ k‖h‖HL

with k = 2ν + 1.
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We have shown that for every φ ∈ Symp0(M,ω) there is a k ≥ 1

(depending on an isotopy {φs} from φ to the identity) such that the

preceding inequality holds for all h ∈ Symp0(M,ω). Applying this to

φ−1 we see that there is an k′ ≥ 1 such that

‖φ−1 ◦ h ◦ φ‖HL ≤ k′‖h‖HL

for all h ∈ Symp0(M,ω). Therefore, for any h ∈ Symp0(M,ω) we have

‖h‖HL = ‖φ−1 ◦ (φ ◦ h ◦ φ−1) ◦ φ‖HL ≤ k′‖φ ◦ h ◦ φ−1‖HL.

That is,
1

k′
‖h‖HL ≤ ‖φ ◦ h ◦ φ−1‖HL ≤ k‖h‖HL.

�

Remark 9. The constant k depends only on φ−1 rather than the iso-

topy {φ−1
s }, because the function L{φ−1

s
}(θ) is the unique normalized

function on M such that d(L{φ−1
s }(θ)) = (φ−1)∗θ − θ.

3. Proof of the main result

We will closely follow the proof given by Polterovich of Theorem

2.4.A in [17] that e(A) > 0. We will use without any change Proposition

1.5.B.

Proposition 1.5.B. [17] For any non-empty open subset A of M ,

there exists a pair of Hamiltonian diffeomorphisms φ and ψ that are

supported in A and whose commutator [φ, ψ] = ψ−1 ◦ φ−1 ◦ψ ◦ φ is not

equal to the identity.

For the sake of completeness we provide the following alternate proof

of this proposition based on the transitivity lemmas in [3] (pages 29

and 109). (For a proof of k-fold transitivity for symplectomorphisms

see [6].)

Proof. Let U be an open connected subset of A such that U ⊂ A.

Pick three distinct points a, b, c ∈ U . By the transitivity lemma of

Ham(M,ω), there exist φ, ψ ∈ Ham(M,ω) such that φ(a) = b and

ψ(b) = c. Moreover, we can choose φ and ψ so that supp (φ) and

supp (ψ) are contained in small tubular neighborhoods V and W of
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distinct paths in U joining a to b and b to c respectively, and we can

assume that c ∈ U\V .

V
U

b

c

a

W

Then (ψ−1φ−1ψφ)(a) = (ψ−1φ−1)(c) = ψ−1(c) = b. Hence [φ, ψ] 6= id.

�

We will say that a map h displaces A if h(A)∩A = ∅. Let us denote

by D(A) the set of all h ∈ Symp0(M,ω) that displace A. We note the

following fact.

Lemma 10. Let φ and ψ be as in Proposition 1.5.B, and let h ∈ D(A).

Then the commutator

θ = [h, φ−1] = φ ◦ h−1 ◦ φ−1 ◦ h

satisfies [φ, ψ] = [θ, ψ].

Proof. If x ∈ A then h(x) 6∈ A. Hence,

θ(x) = (φ ◦ h−1)(φ−1(h(x)))

= φ(h−1(h(x))) since supp (φ−1) ⊂ A

= φ(x),

and we see that θ|A = φ|A. Similarly, for x ∈ A we have φ−1(x) ∈ A,

and hence h(φ−1(x)) 6∈ A since h(A) ∩A = ∅. Thus,

θ−1(x) = h−1(φ(h(φ−1(x))))

= h−1(h(φ−1(x))) since supp (φ) ⊂ A

= φ−1(x),

and we see that θ−1|A = φ−1|A. Thus, (φ−1 ◦ψ ◦φ)(x) = (θ−1 ◦ψ ◦θ)(x)

for all x ∈ A since supp (ψ) ⊂ A.
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Now, if x 6∈ A and θ(x) ∈ A we would have x = θ−1(θ(x)) =

φ−1(θ(x)) ∈ A since supp (φ−1) ⊂ A, a contradiction. Hence, for x 6∈ A

we have θ(x) 6∈ A and

(φ−1 ◦ ψ ◦ φ)(x) = x = (θ−1 ◦ ψ ◦ θ)(x)

since both φ and ψ have support inA. Therefore, φ−1◦ψ◦φ = θ−1◦ψ◦θ,

and we have [φ, ψ] = [θ, ψ].

�

Proof of Theorem 3 continued. Following the proof of Theorem 2.4.A

in [17] we assume there exists h ∈ D(A) 6= ∅. Otherwise, we are done

since es(A) = +∞. Now, let φ and ψ be as in Proposition 1.5.B, and

let θ be as in Lemma 10. The commutator θ is contained in Ham(M,ω)

because commutators are in the kernel of the Calabi invariant. Since

both θ and ψ are in Ham(M,ω) and the Hofer norm is conjugation

invariant, we have

‖[θ, ψ]‖H = ‖ψ−1 ◦ θ−1 ◦ ψ ◦ θ‖H

≤ ‖ψ−1 ◦ θ−1 ◦ ψ‖H + ‖θ‖H

= 2‖θ‖H .

By Buss and Leclercq’s theorem [7] there is constant λ > 0 such that

‖θ‖H ≤ λ‖θ‖HL.

Using the triangle inequality and the constant k > 0 from Theorem 7

we have

‖[θ, ψ]‖H ≤ 2λ
(

‖φ ◦ h ◦ φ−1‖HL + ‖h‖HL

)

≤ 2λ (k‖h‖HL + ‖h‖HL) .

Therefore,

0 <
‖[φ, ψ]‖H

2λ(k + 1)
=

‖[θ, ψ]‖H

2λ(k + 1)
≤ ‖h‖HL.

Since this inequality holds for all h ∈ D(A), we can take the infimum

over D(A) to get

0 <
‖[φ, ψ]‖H

2λ(k + 1)
≤ es(A).

This completes the proof of Theorem 3. �
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Remark 11. The proof of Theorem 1 relied on the bi-invariance of the

distance dH , whereas the proof of Theorem 3 relied on the equivalence

of the norms h 7→ ‖φ ◦ h ◦ φ−1‖HL and ‖ · ‖HL, i.e. the invariance of

dHL up to a constant.

4. Examples

A harmonic 1-parameter group is an isotopy Φ = {φt} generated by

the vector field VH defined by i(VH)ω = H, where H is a harmonic

1-form. It is immediate from the definitions that

l0(Φ) = l0(Φ
−1) = |H|

where |·| is a norm on the space of harmonic 1-forms. Hence l(Φ) = |H|.

Therefore, if φ1 is the time one map of Φ we have

‖φ1‖HL ≤ |H|.

For instance, take the torus T 2n with coordinates (θ1, . . . , θ2n) and

the flat Riemannian metric. Then all the 1-forms dθi are harmonic.

Given v = (a1, . . . , an, b1, . . . , bn) ∈ R
2n, the translation x 7→ x + v on

R
2n induces a rotation ρv on T 2n, which is a symplectic diffeomorphism.

Moreover, x 7→ x + tv on R
2n induces a harmonic 1-parameter group

{ρt
v} on T 2n.

Taking the 1-forms dθi for i = 1, . . . , 2n as basis for the space of

harmonic 1-forms and using the standard symplectic form

ω =
n

∑

j=1

dθj ∧ dθj+n

on T 2n we have

i(ρ̇t
v)ω =

n
∑

j=1

(ajdθj+n − bjdθj) .

Thus,

l({ρt
v}) = |(−b1, . . . ,−bn, a1, . . . , an)|

where | · | is a norm on the space of harmonic 1-forms, and we see that

‖ρv‖HL ≤ |v|
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if we use |v| = |a1| + · · · + |an| + |b1| + · · · + |bn| as the norm on both

R
2n and the space of harmonic 1-forms.

Consider the torus T 2 as the square:

{(p, q) | 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1} ⊂ R
2

with opposite sides identified. For any r < 1
2

let

Ã(r) = {(x, y) | 0 ≤ x < r} ⊂ R
2,

and let A(r) be the corresponding subset in T 2. If v = (r, 0), then the

rotation ρv induced by the translation (p, q) 7→ (p+r, q) displaces A(r).

Therefore, using the norm |v| = |a1| + |b1| = r we have

‖ρv‖HL ≤ l({ρt
v}) = r.

Therefore,

es(A(r)) ≤ r.

Remark 12. Note that in the above example the symplectic displace-

ment energy is finite, whereas the Hamiltonian displacement energy

e(A(r)) is infinite. This follows from a result proved by Gromov [12]:

If (M,ω) is a symplectic manifold without boundary that is convex at

infinity and L ⊂ M is a compact Lagrangian submanifold such that [ω]

vanishes on π2(M,L), then for any Hamiltonian symplectomorphism

φ : M → M the intersection φ(L) ∩ L 6= ∅. Stronger versions of this

result can be found in [9], [10], and [11]. See also Section 9.2 of [15].

5. Application

The following result is an immediate consequence of the positivity of

the symplectic displacement energy of non-empty open sets. For two

isotopies Φ and Ψ denote by Φ−1 ◦ Ψ the isotopy given at time t by

(Φ−1 ◦ Ψ)t = φ−1
t ◦ ψt.

Theorem 13. Let Φn be a sequence of symplectic isotopies and let Ψ

be another symplectic isotopy. Suppose that the sequence of time-one

maps φn,1 of the isotopies Φn converges uniformly to a homeomorphism

φ, and l(Φ−1
n ◦ Ψ) → 0 as n→ ∞, then φ = ψ1.
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This theorem can be viewed as a justification for the following defi-

nition, which appeared in [1] and [4].

Definition 14. A homeomorphism h of a compact symplectic mani-

fold is called a strong symplectic homeomorphism if there exist a

sequence Φn of symplectic isotopies such that φn,1 converges uniformly

to h, and l(Φn) is a Cauchy sequence.

Proof of Theorem 13. Suppose φ 6= ψ1, i.e. φ−1 ◦ ψ1 6= id. Then there

exists a small open ball B such that (φ−1 ◦ ψ1)(B)∩B = ∅. Since φn,1

converges uniformly to φ, ((φn,1)
−1◦ψ1)(B)∩B = ∅ for n large enough.

Therefore, the symplectic displacement energy es(B) of B satisfies

es(B) ≤ ‖(φn,1)
−1 ◦ ψ1‖HL ≤ l(Φ−1

n ◦ Ψ).

The last term tends to zero, which contradicts the positivity of es(B).

�

Remark 15. This theorem was first proved by Hofer and Zehnder for

M = R
2n [13], and then by Oh-Müller in [16] for Hamiltonian isotopies

using the same lines as above, and very recently by Tchuiaga [18], using

the L∞ version of the Hofer-like norm.

Acknowledgments

We would like to thank the referee for carefully reading earlier versions

of this paper and providing the statement of Theorem 7.

References
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