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ABSTRACT. We define the symplectic displacement energy of a
non-empty subset of a compact symplectic manifold as the infi-
mum of the Hofer-like norm [5] of symplectic diffeomorphisms that
displace the set. We show that this energy (like the usual dis-
placement energy defined using Hamiltonian diffeomorphisms) is
a strictly positive number on sets with non-empty interior. As a
consequence we prove a result justifying the introduction of the

notion of strong symplectic homeomorphisms [4].

1. STATEMENT OF RESULTS

In [14], Hofer defined a norm || - ||z on the group Ham(M, w) of com-
pactly supported Hamiltonian diffeomorphisms of a symplectic mani-
fold (M, w).

For a non-empty subset A C M, he introduced the notion of the
displacement energy e(A) of A:

e(A) = inf{|[¢l[n | ¢ € Ham(M,w), p(A) N A = 0}.

The displacement energy is defined to be 400 if no compactly sup-
ported Hamiltonian diffeomorphism displaces A.
Eliashberg and Polterovich [8] proved the following result.

Theorem 1. For any non-empty open subset A of M, e(A) is a strictly
positive number.

It is easy to see that if A and B are non-empty subsets of M such
that A C B, then e(A) < e(B), and that e is a symplectic invariant.
That is,

e(f(A)) = e(A)
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for all f € Symp(M,w) = {¢ € Diff (M) | ¢*w = w}. This follows from
the fact that [[fodo f~'|u = [|¢]ln-

In [5], a Hofer-like metric || - ||z was constructed on the group
Symp, (M, w) of all symplectic diffeomorphisms of a compact symplec-
tic manifold (M,w) that are isotopic to the identity. It was proved
recently by Buss and Leclercq [7] that the restriction of || - ||mL to
Ham(M,w) is a metric equivalent to the Hofer metric.

Let us now propose the following definition.

Definition 2. The symplectic displacement energy e (A) of a non-
empty subset A C M is defined to be:

es(A) = inf{[|2[|ar | h € Sympy (M, w), h(A) N A = O}

if some element of Symp,(M,w) displaces A, and 400 if no element of
Symp, (M, w) displaces A.

Clearly, if A and B are non-empty subsets of M such that A C B, then
es(A) < ey(B).

The goal of this paper is to prove the following result.

Theorem 3. For any closed symplectic manifold (M,w), the symplectic
displacement energy of any subset A C M with non-empty interior
satisfies es(A) > 0.

2. THE HOFER NORM || - ||z AND THE HOFER-LIKE NORM || - ||mL

2.1. Sympo(M,w) and Ham(M, w). Let Iso(M,w) be the set of all
compactly supported symplectic isotopies of a symplectic manifold
(M,w). A compactly supported symplectic isotopy ® € Iso(M,w) is a
smooth map ® : M x [0, 1] — M such that for all ¢ € [0, 1], if we denote
by ¢i(x) = ®(x,t), then ¢, € Symp(M,w) is a symplectic diffeomor-
phism with compact support, and ¢y = id. We denote by Symp, (M, w)
the set of all time-1 maps of compactly supported symplectic isotopies.

Isotopies ® = {¢;} are in one-to-one correspondence with families of
smooth vector fields {¢;} defined by

_ doy

du(a) = 07 @),
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If & € Iso(M,w), then the one-form i(¢;)w such that

i(P)w(X) = w(er, X)

for all vector fields X is closed. If for all ¢ the 1-form i(¢y)w is exact,
that is, there exists a smooth function F' : M x [0,1] — R, F(x,t) =
Fy(z), with compact supports such that i(¢;)w = dF}, then the isotopy
® is called a Hamiltonian isotopy and will be denoted by ®r. We
define the group Ham(M,w) of Hamiltonian diffeomorphisms as the
set of time-one maps of Hamiltonian isotopies.

For each ® = {¢;} € Iso(M,w), the mapping

o[ 1<z'<a‘st>w>dt] |

where [a] denotes the cohomology class of a closed form «, induces a
well defined map S from the universal cover of Symp, (M, w) to the first
de Rham cohomology group H'(M,R). This map is called the Cal-
abi invariant (or the flux). It is a surjective group homomorphism.
Let I' ¢ H'(M,R) be the image by S of the fundamental group of
Symp, (M, w). We then get a surjective homomorphism

S : Sympy(M,w) — H*(M,R)/T.
The kernel of this homomorphism is the group Ham(M, w) [2,3].

2.2. The Hofer norm. Hofer [14] defined the length {y of a Hamil-
tonian isotopy Pp as

1
lg(®p) = / (osc Fy(z)) dt,

0
where the oscillation of a function f: M — R is

ose (f) = max(f(x)) — min(f(x)).

zeM rzeM

For ¢ € Ham(M,w), the Hofer norm of ¢ is

[0llr = inf{lx (Pr)},

where the infimum is taken over all Hamiltonian isotopies ®pr with
time-one map equal to ¢, i.e. pp1 = ¢.
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The Hofer distance dg(¢,) between two Hamiltonian diffeomor-
phisms ¢ and 1 is

du(o,0) = |[¢pov ™" a.

This distance is bi-invariant. This property was used in [8] to prove
Theorem 1.

2.3. The Hofer-like norm. Now let (M, w) be a compact symplectic
manifold without boundary, on which we fix a Riemannian metric g.
For each ® = {¢;} € Iso(M,w), we consider the Hodge decomposition
[19] of the 1-form i(¢;)w as

i(gﬁﬁt)w = Ht + dut,

where H; is a harmonic 1-form. The forms H; and u; are unique and
depend smoothly on t.
For & € Iso(M,w), define

Iy(@) = / (1M + osc (us(2)) dt,

where |H;| is a norm on the finite dimensional vector space of harmonic
1-forms. We let

1(6) = 5(10(®) + (™),

where &1 = {¢;'}.
For each ¢ € Symp,(M,w), let

16l = inf{l(®)},
where the infimum is taken over all symplectic isotopies ® = {¢;} with
1= o.

The following result was proved in [5].

Theorem 4. For any closed symplectic manifold (M,w), || - ||aL is a
norm on Symp,(M,w).

Remark 5. The norm |- ||z depends on the choice of the Riemannian
metric g on M and the choice of the norm |-| on the space of harmonic 1-
forms. However, different choices for g and |- | yield equivalent metrics.
See Section 3 of [5] for more details.
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2.4. Some equivalence properties. Let (M,w) be a compact sym-
plectic manifold. Buss and Leclercq have proved:

Theorem 6. [7| The restriction of the Hofer-like norm || - || to
Ham(M,w) is equivalent to the Hofer norm || - || u.

We now prove the following.
Theorem 7. Let ¢ € Sympy(M,w). The norm
hi|lpoho¢™ |uL
on Sympy(M,w) is equivalent to the norm || - || mL.

Remark 8. We owe the statement of the above theorem to the referee

of a previous version of this paper.

Proof. Let {h:} be an isotopy in Symp,(M,w) from h to the identity,
and let

i(ht)w = Ht + dut

be the Hodge decomposition of i(h;)w. Then ¥ = {¢ o hy 0 ¢!} is an
isotopy from ¢ o ho ¢! to the identity and ¥, = gb*ht. Therefore,

i(W)w = (67 (i(h)d*w) = (67 (Hitduy) = (¢~ ) Hy+d(uod™).

Let {¢;'} be an isotopy from ¢! to the identity, and let Lx =
ixd + dix be the Lie derivative in the direction X. Then

d
Ay

&5 ) H) = (071 (LyaHe) = d((671) (651 VL),
where ¢, = (4¢,") 0 ¢,. Integrating from 0 to 1 we get
(07" He — Hy = doy
where
o= [ (62l H,) ds.
Therefore,

z'(\ift)w =H, +d(ug 007+ ay).
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Hence,

1
(V) = /(|Ht|+osc(utogb_1+ozt))dt
0
1 1
@) -1 t
< [ (el oscluo g™ de+ [ oseon) a

= /0 (|He| + osc (ug)) dt +/0 osc (o) dt
= lo({m})+ K
where

1
K:/ osc (o) dt.
0

Let us now do the same calculation for U=' = {¢p o h; ' o 7!},

Since h; ! satisfies iyt = —(h;t) Ay, the cohomology classes of i(hy)w
and z'(h[l)w are of opposite sign. Since the Hodge decomposition is
unique and the harmonic part of the first form is H;, the harmonic
part of the second form is —H;. Therefore, there is a smooth family of
functions v, such that the Hodge decomposition for i(h; ')w is

i(hy Hw = —H, + duy.
The same calculation shows
i(U7w = —Hy + d(ve 0 7 — o).

Hence,

(P71 < lo({hi'}) + K.

We will now estimate K = fol osc (ay) dt. Fix an isotopy {¢;!'} from
¢! to the identity. Consider the continuous linear map

Loy HH(M,g) — C=(M)

from the finite dimensional vector space of harmonic 1-forms given by

Ly (0) = /0 ((¢5)i(9;1)0) ds.
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Let v > 0 be the norm of L,-1, where the norm on HY (M, g) is
defined by the metric g and C*°(M) is given the sup norm. Then
|Lis-11(0)] < v]f]. In our case oy = Ly4-1,(Hy). Therefore,

o] < v Hy

and
osc (ay) < 2|lay| < 2v|Hy|.

This implies
osc (o) < 2v (|Hy| + osc (ug)) and osc (o) < 2v (|Hy| + osc (v4)) -
Hence,
K= /01 osc (o) dt < 2vly({h:}),

and

K= /1 osc (ay) dt < 2vlo({h;'}).

Now recall that,
lo(\lf) S lo({ht}) + K and lo(\lf_l) S lo({ht_l}) + K.
Therefore,

() = 5 (lo(T) +1(T™))

IN
N —

1
5 (lo({he}) + 20 lo({he}) + lo({hi}) + 20 lo({h 1))
< (@v+Di({}).
Taking the infimum over the set I(h) of all symplectic isotopies from

h to the identity we get

] <
inf 1(%) < (20 + D).

and since

6 ho 6™ s < inf 1(¥)
we get

[¢pohod™ |ur < k|h|luL
with £k = 2v + 1.
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We have shown that for every ¢ € Symp,(M,w) there is a k > 1
(depending on an isotopy {¢s} from ¢ to the identity) such that the
preceding inequality holds for all A € Symp,(M,w). Applying this to
¢~ ! we see that there is an &’ > 1 such that

lo™ o hollmr < K||hllnL

for all h € Symp,(M,w). Therefore, for any h € Symp,(M,w) we have

Ikl = |l¢ o (pohog¢™)od||luL <K|¢pohod™|ur.
That is,
1
EHhHHL <|¢poho¢ uL <k|hlmL
]

Remark 9. The constant k& depends only on ¢! rather than the iso-
topy {¢;'}, because the function L4-1,(0) is the unique normalized
function on M such that d(L,-1,(0)) = (¢~")*0 — 0.

3. PROOF OF THE MAIN RESULT

We will closely follow the proof given by Polterovich of Theorem
2.4.A'in [17] that e(A) > 0. We will use without any change Proposition
1.5.B.

Proposition 1.5.B. [17] For any non-empty open subset A of M,
there exists a pair of Hamiltonian diffeomorphisms ¢ and v that are
supported in A and whose commutator [¢,] =1~ o¢ ™ o1h o is not
equal to the identity.

For the sake of completeness we provide the following alternate proof
of this proposition based on the transitivity lemmas in [3] (pages 29
and 109). (For a proof of k-fold transitivity for symplectomorphisms
see [6].)

Proof. Let U be an open connected subset of A such that U C A.
Pick three distinct points a,b,c¢ € U. By the transitivity lemma of
Ham(M,w), there exist ¢,9 € Ham(M,w) such that ¢(a) = b and
¥(b) = ¢. Moreover, we can choose ¢ and v so that supp (¢) and
supp (¢) are contained in small tubular neighborhoods V and W of
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distinct paths in U joining a to b and b to ¢ respectively, and we can
assume that ¢ € U\V.

Then (~'¢~¢¢)(a) = (v '¢7")(c) = ¥~ (c) = b. Hence [¢,¢] # id.
UJ

We will say that a map h displaces A if h(A)NA = (). Let us denote
by D(A) the set of all h € Symp,(M,w) that displace A. We note the
following fact.

Lemma 10. Let ¢ and v be as in Proposition 1.5.B, and let h € D(A).
Then the commutator

0=[ho¢]=pohtogptoh
satisfies (¢, V] = [0,9].
Proof. If © € A then h(z) ¢ A. Hence,
0(z) = (poh™)(¢7" (h(x)))
= ¢(h'(h(z)))  sincesupp (¢~') C A
= ¢(a),

and we see that 0|4 = ¢|4. Similarly, for x € A we have ¢~1(z) € A,
and hence h(¢~(x)) & A since h(A) N A = (). Thus,

0 (x) = h7H(d(h(¢7 (2))))
= h7'(M(¢ ' (2)))  since supp(¢) C A

and we see that 6714 = ¢~ 4. Thus, (¢ Lopo¢)(z) = (I~Lopod)(z)
for all x € A since supp (¢) C A.
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Now, if x € A and 0(x) € A we would have z = 67}(f(z)) =
¢ 1(0(z)) € A since supp (¢~1) C A, a contradiction. Hence, for z ¢ A
we have 0(z) ¢ A and

(0 ovod)(z)=z=(0"" opob)(x)

since both ¢ and 1) have support in A. Therefore, ¢~ 'othog = = or)ob,
and we have [¢,¢] = [0, ].
U

Proof of Theorem 8 continued. Following the proof of Theorem 2.4.A
in [17] we assume there exists h € D(A) # (. Otherwise, we are done
since e5(A) = +00. Now, let ¢ and 9 be as in Proposition 1.5.B, and
let 6 be as in Lemma 10. The commutator € is contained in Ham (M, w)
because commutators are in the kernel of the Calabi invariant. Since
both # and v are in Ham(M,w) and the Hofer norm is conjugation
invariant, we have

10, 0lllr = [l o0 oypobn
< o0 ol + [10]lm
= 2[|0]|u-

By Buss and Leclercq’s theorem [7] there is constant A > 0 such that
10l < A0 s

Using the triangle inequality and the constant £ > 0 from Theorem 7

we have
10, ¢9)le < 2X(lpohod L+ |h]lacL)
< 2A(K[[hllar + (PllaL) -
Therefore,
o < Mol _ 119, 4]ln < Ihflwe.

2A(k+1)  2M(k+1)
Since this inequality holds for all A € D(A), we can take the infimum
over D(A) to get
¢, ¥]lle
0 < +————= <es(4).
<ot =@

This completes the proof of Theorem 3. 0J
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Remark 11. The proof of Theorem 1 relied on the bi-invariance of the
distance dy, whereas the proof of Theorem 3 relied on the equivalence
of the norms h +— ||¢p o ho ¢~ g and || - ||z, i.e. the invariance of
dg, up to a constant.

4. EXAMPLES

A harmonic 1-parameter group is an isotopy ® = {¢;} generated by
the vector field V3 defined by (Vi )w = H, where H is a harmonic
1-form. It is immediate from the definitions that

lo(®) =1o(27") = |H]|

where |-| is a norm on the space of harmonic 1-forms. Hence [(®) = |H].
Therefore, if ¢, is the time one map of ® we have

[frll e < [HI.

For instance, take the torus T%" with coordinates (01, ...,0s,) and
the flat Riemannian metric. Then all the 1-forms df; are harmonic.
Given v = (ay,...,an,b1,...,b,) € R* the translation z — z + v on
R?" induces a rotation p, on T*", which is a symplectic diffeomorphism.
Moreover, z — x + tv on R?" induces a harmonic 1-parameter group
{ot} on 720,

Taking the 1-forms df; for « = 1,...,2n as basis for the space of
harmonic 1-forms and using the standard symplectic form

w=> df; Adbjn

J=1

on T?" we have

n

i(ph)w = (a;df;s — b;db;).

7=1
Thus,
[{P}) = [(=bis. ooy =bn,ar, .. an)|

where |- | is a norm on the space of harmonic 1-forms, and we see that

lpollzz < fv|
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if we use |v| = |ai|+ -+ + |an| + |b1| + - - + |bn| as the norm on both
R?" and the space of harmonic 1-forms.

Consider the torus T2 as the square:
{(p,q)|0<p<land 0<gq<1}cCR?
with opposite sides identified. For any r < % let
A(r) ={(z,y) [0 <z <r} CR?

and let A(r) be the corresponding subset in T?. If v = (r,0), then the
rotation p, induced by the translation (p, q) — (p+7, q) displaces A(r).
Therefore, using the norm |v| = |a1| + |b1| = 7 we have

ool < 1{P5Y) =

Therefore,
es(A(r)) <.

Remark 12. Note that in the above example the symplectic displace-
ment energy is finite, whereas the Hamiltonian displacement energy
e(A(r)) is infinite. This follows from a result proved by Gromov [12]:
If (M,w) is a symplectic manifold without boundary that is convex at
infinity and L C M is a compact Lagrangian submanifold such that [w]
vanishes on (M, L), then for any Hamiltonian symplectomorphism
¢ : M — M the intersection ¢(L) N L # ). Stronger versions of this
result can be found in [9], [10], and [11]. See also Section 9.2 of [15].

5. APPLICATION

The following result is an immediate consequence of the positivity of
the symplectic displacement energy of non-empty open sets. For two
isotopies ® and ¥ denote by ®~! o U the isotopy given at time t by

(P o W), =¢; " oty

Theorem 13. Let ®,, be a sequence of symplectic isotopies and let W
be another symplectic isotopy. Suppose that the sequence of time-one
maps ¢n.1 of the isotopies ®,, converges uniformly to a homeomorphism
¢, and (@1 o U) — 0 as n — oo, then ¢ = ;.
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This theorem can be viewed as a justification for the following defi-
nition, which appeared in [1] and [4].

Definition 14. A homeomorphism h of a compact symplectic mani-
fold is called a strong symplectic homeomorphism if there exist a
sequence ®,, of symplectic isotopies such that ¢, ; converges uniformly
to h, and [(®,,) is a Cauchy sequence.

Proof of Theorem 13. Suppose ¢ # 1)1, i.e. ¢~ o), # id. Then there
exists a small open ball B such that (¢~ o1))(B)N B = (). Since ¢,
converges uniformly to ¢, ((¢n1) ' o1)(B)NB = @ for n large enough.
Therefore, the symplectic displacement energy es(B) of B satisfies

es(B) < [(6na) ™" o ¥nllmr <UD, 0 W),

The last term tends to zero, which contradicts the positivity of es(B).
O

Remark 15. This theorem was first proved by Hofer and Zehnder for
M = R?" [13], and then by Oh-Miiller in [16] for Hamiltonian isotopies
using the same lines as above, and very recently by Tchuiaga [18], using
the L* version of the Hofer-like norm.
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