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Abstract. The flow category of a Morse-Bott-Smale function
fA : Gn(C∞) → R is shown to be related to the flow category
of the action functional on the universal cover of LGn,n+k(C) via
a group action. The Floer homotopy type and the associated co-
homology ring of fA : Gn(C∞) → R are computed. When n = 1
this cohomology ring is the Floer cohomology of G1,1+k(C).

1. Introduction

In [8] Floer defined cohomology groups associated to a perturbed ac-
tion functional on the loop space of a monotone symplectic manifold. In
related papers Floer defined cohomology groups for the Chern Simons’
functional on a 3-manifold [6] and for the intersection of Lagrangian
submanifolds [7]. Floer’s cohomology groups were defined using infi-
nite dimensional Morse theoretic techniques, but in several aspects his
methods were fundamentally different from those in traditional infinite
dimensional Morse theory. For example, the critical points in his the-
ory all have infinite index (although the relative index between any two
critical points is finite); also, the higher dimensional spaces of piecewise
gradient flow lines in Floer’s theory may be non-compact.

Recently Cohen, Jones, and Segal have been studying the properties
that a function on an infinite dimensional manifold must have in order
to define Floer cohomology. Furthermore, in several cases they have
studied, the “Floer function,” i.e. a function which can be used to de-
fine Floer cohomology groups, can actually be used to define an inverse
system of spectra (a pro-spectrum). They call this inverse system of
spectra the “Floer homotopy type” and the Floer cohomology groups
can be recovered from the Floer homotopy type. One of their goals is
to discover what additional properties (if any) a Floer function must
satisfy in order to define the Floer homotopy type.

A basic component of their theory is that one can encode the dy-
namics of a Floer function in terms of a topological category which
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they call the “flow category.” The objects of the flow category are the
critical points of the function and the morphisms are the unparameter-
ized piecewise gradient flow lines of the function. In finite dimensions
the flow category is compact (i.e. the morphism spaces are compact)
and framed (i.e. there is a stable framing of each morphism space).
The geometric realization of the flow category of an arbitrary Morse
function on a finite dimensional compact manifold is homotopy equiv-
alent to the manifold, and if the function satisfies the Morse-Smale
transversality condition then the geometric realization of the flow cat-
egory is homeomorphic to the manifold [4]. In infinite dimensions the
Floer homotopy type is constructed from the flow category of the ac-
tion functional on a covering of the manifold. For instance, the Floer
homotopy type of the action functional on LCP k is constructed from
the flow category of the action functional on the universal cover of
LCP k.

In [5] Cohen, Jones, and Segal announced some results concerning
the Floer homotopy type of the action functional on LCP k. In this pa-
per I generalize their results by proving a theorem that relates the flow
category of the action functional on the universal cover of LGn,n+k(C)
to the flow category of a Morse-Bott function on Gn(C∞). One diffi-
culty which arises with the flow category of the action functional on
the universal cover of LGn,n+k(C) is that the morphism spaces are not
compact. In [5] Cohen, Jones, and Segal note that the Donaldson-
Uhlenbeck compactification of the space of (parameterized) gradient
flow lines of the action functional between any two critical subman-
ifolds in the universal cover of LCP k (i.e. the space of holomorphic
maps CP 1 → CP k of degree d) is homeomorphic to CP (k+1)(d+1)−1.
Moreover, they note that for every k ∈ Z+ one can construct a nat-
ural compactification of the flow category by embedding it into the
flow category of a Morse-Bott-Smale function fA : CP∞ → R. The
Floer homotopy type of the compactified flow category of the action
functional on LCP k is

CP∞ ← (CP∞)−(1+k)γ1 ← (CP∞)−2(1+k)γ1 ← · · ·

where γ1 denotes the Hopf line bundle over CP∞.
When n > 1 there is a Morse-Bott-Smale function fA : Gn(C∞)→ R

(for every k ∈ Z+) which generalizes the function fA : CP∞ → R
used by Cohen, Jones, and Segal, but the flow category of the action
functional on the universal cover of LGn,n+k(C) does not embed into
the flow category of this function. There is however an R-equivariant
fiber bundle which relates the two flow categories. In this paper I
prove that there exists a Morse-Bott-Smale function fA : Gn(C∞)→ R
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such that for an open dense subset U ⊆ Vn(C∞) the topological group
GLc

n(C[z, z−1]), consisting of n× n matrices with Laurent polynomial
entries whose determinant is a non-zero constant, acts on U and induces
a flow category on U/GLc

n(C[z, z−1]) from the gradient flow lines of
fA : Gn(C∞)→ R. The induced flow category is isomorphic to the flow
category of the action functional on the universal cover of LGn,n+k(C).
That is we have the following fiber bundle,

GLc
n(C[z, z−1])/GLn(C) U/GLn(C)

U/GLc
n(C[z, z−1])

-

?

π

whose projection map π is R-equivariant with respect to the restriction
of the gradient flow of fA : Gn(C∞) → R to U/GLn(C) ⊆ Gn(C∞).
Later in this paper U ⊆ Vn(C∞) is identified as the space of all poly-
nomial maps C∗ → Vn,n+k(C). Note that when n = 1 we have π = id
and this reduces to the result announced by Cohen, Jones and Segal in
[5].

The Floer homotopy type of fA : Gn(C∞)→ R has

Gn(C∞)← Gn(C∞)−(n+k)γn ← Gn(C∞)−2(n+k)γn ← · · ·
as a cofinal system where γn denotes the tautological n-plane bundle
over Gn(C∞) and the maps are induced by certain bundle inclusions.
Applying H∗ and using the Thom Isomorphism Theorem we have the
following direct system.

H∗(Gn(C∞))
∪cn+k

n→ H∗+2n(n+k)(Gn(C∞))
∪cn+k

n→ · · ·

The direct limit of this system is H∗(Gn(C∞))[c
−(n+k)
n ]. When n = 1

this ring is the Floer cohomology of CP k.

2. Flow Categories

The flow category of a Morse function on a finite dimensional com-
pact smooth Riemannian manifold M was first defined by Cohen, Jones,
and Segal in [3]. As they note in [5] their definition readily extends to
a Morse-Bott function [2] on a finite dimensional compact smooth Rie-
mannian manifold.

Definition 1. Let f : M → R be a Morse-Bott function on a finite
dimensional compact smooth Riemannian manifold M . The flow cate-
gory of f , denoted Cf , is the topological category whose objects are the
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critical points of f topologized as a subspace of M and whose morphisms
are the unparameterized piecewise gradient flow lines of f . That is, for
any two critical points a and b, Mor(a, b) is defined to be the space of
all continuous maps ω : [f(b), f(a)]→M satisfying

1. ω(f(b)) = b
2. ω(f(a)) = a
3. Away from the critical points of fA the map ω is smooth and

satisfies the following differential equation.

dω

dt
=
∇(f)

‖∇(f)‖2

Mor(a, b) is topologized as a subset of the space of all continuous maps
from the closed interval [f(b), f(a)] to M . This space of continuous
maps is given the compact-open topology. Composition in Cf is given
by concatenation.

In [3] Cohen, Jones, and Segal prove the following theorem for a
Morse function f defined on a finite dimensional compact smooth Rie-
mannian manifold M , and in [5] they note that their proof generalizes
to the case when f is Morse-Bott.

Definition 2. Let f : M → R be a Morse-Bott function defined on
a smooth Riemannian manifold M . f is said to satisfy the Morse-
Bott-Smale transversality condition if and only if for any two critical
submanifolds M and N , W u(m) t W s(N) for all m ∈M .

Let BCf denote the geometric realization of Cf .

Theorem 3.
(1) If f : M → R is a generic Morse-Bott function (one whose gradient
flow satisfies the Morse-Bott-Smale transversality condition) then there
is a homeomorphism

BCf ∼= M.

(2) For any Morse-Bott function f : M → R there is a homotopy
equivalence

BCf 'M.

The above definition of the flow category is sufficient for finite di-
mensional compact manifolds, but in infinite dimensions the equation

dω

dt
=
∇(f)

‖∇(f)‖2

may not give a well posed initial value problem. Moreover, we would
prefer a definition of the flow category which makes sense in the more
general setting of an R-action on a space X where X is not necessarily
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a manifold. The following definition is general enough to apply to a
wide variety of problems.

Definition 4. Let X be a metric space with an action R × X → X.
Let a, b ∈ Ob(CX). Define Mor′(a, b) to be the space of all piecewise
flow lines on X from a to b, i.e. R-equivariant subsets of X which are
the images of continuous injective paths from a to b. The topology on
Mor′(a, b) is the topology induced from the sup− inf-metric dsi, i.e. if
l1, l2 ∈Mor′(a, b), then

dsi(l1, l2) = sup
x1∈l1

inf
x2∈l2

d(x1, x2) + sup
x2∈l2

inf
x1∈l1

d(x1, x2)

where d is the metric on X.

Theorem 5. For a finite dimensional compact smooth Riemannian
manifold M there is a homeomorphism

φ : Mor(a, b)→Mor′(a, b)

for any a, b ∈ Ob(Cf) defined by sending a map in Mor(a, b) to its
image.

Proof: It is clear that φ is a bijection. Let ω1, ω2 ∈Mor(a, b). Since

dsi(φ(ω1), φ(ω2)) ≤ dsup(ω1, ω2)

φ is continuous.
Now assume that lj → l ∈ Mor′(a, b). To show that φ−1 is continu-

ous it suffices to show that φ−1(lj)→ φ−1(l). To prove this we will use
the fact that for a compact finite dimensional manifold M the space
Mor(a, b) is compact [3]. Ascoli’s Theorem then implies that Mor(a, b)
is uniformly equicontinuous.

Pick any ε > 0. Choose δ > 0 such that

|t1 − t2| < δ implies d(ω(t1), ω(t2)) < ε/2

for all t1, t2 ∈ [f(b), f(a)] and for all ω ∈Mor(a, b). Since f is uniformly
continuous there exists δ1 > 0 such that

d(x1, x2) < δ1 implies |f(x1)− f(x2)| < δ

for all x1, x2 ∈M . Choose J such that j > J implies

dsi(lj, l) < min{δ1, ε/2}.
Then for any t ∈ [f(b), f(a)] and for all j > J we have

d(φ−1(lj)(t), φ
−1(l)(t)) < d(φ−1(l)(t), xj) + d(xj, φ

−1(lj)(t))

where xj ∈ lj is the point closest to φ−1(l)(t). Since d(φ−1(l)(t), xj) <
min{δ1, ε/2} and f(φ−1(l)(t)) = t we have

|t− f(xj)| < δ



6 DAVID E. HURTUBISE

which implies d(xj, φ
−1(lj)(t)) < ε/2. Therefore,

d(φ−1(lj)(t), φ
−1(l)(t)) < ε/2 + ε/2

for all t ∈ [f(b), f(a)] and for all j > J .

2

The assumption that X is metrizable is not essential. Given any
topological space X with an action R×X → X we can take as a basis
for the topology of Mor′(a, b) the sets

B(U1, . . . , Un) = {l ∈Mor′(a, b)|l ∩ Uj 6= ∅ for all j = 1, . . . , n}
where U1, . . . , Un are open sets in X. It is easy to see that the topol-
ogy defined by this basis agrees with the topology defined above on
Mor′(a, b) when X is a metric space.

From now on we will define the flow category Cf by taking Mor′(a, b)
as the space of morphisms from a to b. The main advantage to this
approach is that the flow category is now defined for every topological
space X with an action R × X → X. The following theorem follows
immediately from the definition.

Theorem 6. Let X and Y be R-spaces and let g : X → Y be an R-
equivariant map. Then g induces a functor G : CX → CY . If g is
continuous, then G is continuous.

3. The relationship between the two flow categories

Let (Gn,n+k(C), ω) denote the complex Grassmann manifold of n-
planes in Cn+k with its standard symplectic form ω. Since Gn,n+k(C)
is simply connected, πj(LGn,n+k(C)) = πj+1(Gn,n+k(C)) for all j ∈ Z+

where LGn,n+k(C) denotes the free loop space. The universal cover of
the free loop space consists of equivalence classes [γ, ω] where γ : S1 →
Gn,n+k(C) is in LGn,n+k(C) and θ : D2 → Gn,n+k(C) is an extension

of γ well defined up to homotopy rel S1. The action functional Ãω :

L̃Gn,n+k(C)→ R is defined by

Ãω([γ]) =

∫

D2

θ∗ω.

This descends to a function Aω : LGn,n+k(C)→ R/Z.
In [8] Floer defined cohomology groups graded mod 2N for a mono-

tone symplectic manifold (M, ω) where N is the minimal Chern num-
ber of M . Floer’s chain complex is generated by the critical points of
a perturbation of the action functional on M . He defined an index for
these critical points which is well defined mod 2N . In [17] Salamon and
Zehnder defined a Maslov index for the critical points of a perturbation
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of the action functional on the universal abelian cover of a symplectic
manifold (M, ω). Their index can be used to define Floer cohomology
groups graded over Z and periodic with period 2N (see section 10.1
of [14]). The universal abelian cover of M is the covering space of
LM whose group of deck transformations is the image of the Hurewicz
homomorphism π2(M) → H2(M) modulo torsion. Since Gn,n+k(C) is
simply connected and π2(Gn,n+k(C)) = Z is torsion free, the universal

abelian cover of Gn,n+k(C) is the universal cover L̃Gn,n+k(C).
The boundary operator in Floer’s chain complex is defined by count-

ing the number of gradient flow lines of the perturbed action functional
on LM connecting two critical points. In [14] McDuff and Salamon de-
fine the boundary operator by counting the number of gradient flow
lines of the perturbed action functional on the universal abelian cover
of LM connecting two critical points. The projection from the uni-
versal abelian cover of LM to LM is R-equivariant and hence maps
critical points to critical points and gradient flow lines to gradient flow
lines.

In this section we will study the flow category of the unperturbed
action functional on the universal cover of LGn,n+k(C). The gradient
flow lines are lifts of the gradient flow lines of the action functional Aω :
LGn,n+k(C) → R/Z. Floer cohomology for the unperturbed action
functional on the universal cover of a symplectic manifold was defined
using spectral sequences by Ruan and Tian in [16].

Definition 7. Define γ ∈ LGn,n+k(C) (or L̃Gn,n+k(C)) to be an alge-
braic point if and only if γ lies on a gradient flow line which begins and
ends at critical points.

The gradient flow lines of Aω are holomorphic curves from R × S1 =
C/iZ to Gn,n+k(C) [8]. Thus γ ∈ LGn,n+k(C) is an algebraic point if
and only if there exists a holomorphic curve h : CP 1 → Gn,n+k(C) such
that h(eis) = γ(s) for all s ∈ [0, 2π]. A holomorphic curve h : CP 1 →
Gn,n+k(C) determines a gradient flow line h′ : R → LGn,n+k(C) by
h′(t)(s) = h(et+is) and these flow lines lift to gradient flow lines on

L̃Gn,n+k(C). It is the images of these lifts which determine the flow

category of Ãω : L̃Gn,n+k(C)→ R.

Definition 8. The flow category of Aω : LGn,n+k(C)→ R/Z (or Ãω)
is defined to be the flow category of the space of algebraic points in

LGn,n+k(C)(or L̃Gn,n+k(C)) where the R-action is given by the gradient
flow.

The object space of the flow category of A : LGn,n+k(C) → R con-
sists of a single critical submanifold, Gn,n+k(C) ⊆ LGn,n+k(C). Since
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Gn,n+k(C) is simply connected and π1(LGn,n+k(C)) = Z, the object

space of the flow category of Ã : L̃Gn,n+k(C) → R is Z × Gn,n+k(C).
A gradient flow line of the action functional R → LGn,n+k(C) which
begins and ends at critical points is given by a holomorphic map
h : CP 1 → Gn,n+k(C). Such maps can be represented by equivalence
classes of n× (n+k) matrices with polynomial entries (see for instance
[13]). As we will see later in this section, the lifts of the corresponding

gradient flow lines to L̃Gn,n+k(C) can be represented by equivalence
classes of n× (n + k) matrices with Laurent polynomial entries.

Let C[z, z−1] be the ring of Laurent polynomials. As a vector space
over C we have

C[z, z−1] ≈ C∞.

We will use the notation Vn,n+k(C[z, z−1]) to denote the Stiefel manifold
of n-tuples of linearly independent vectors in the infinite dimensional
complex vector space

C[z, z−1]n+k = C[z, z−1]× · · · × C[z, z−1]︸ ︷︷ ︸
n+k

≈ C∞

and

Gn,n+k(C[z, z−1]) = Vn,n+k(C[z, z−1])/GLn(C) ≈ Gn(C∞)

to denote the infinite dimensional complex Grassmann manifold of n-
planes in C[z, z−1]n+k.

Let Mn,n+k(C) be the set of all n × (n + k) matrices with entries
in C and let Mn,n+k(C[z, z−1]) be the set of all n × (n + k) matrices
with entries in C[z, z−1]. For every w ∈ C∗ we have an evaluation map
ew : Vn,n+k(C[z, z−1]) → Mn,n+k(C) defined by evaluating the Laurent
polynomial entries of M ∈ Vn,n+k(C[z, z−1]) at the point w. We define

U = Pn,n+k(C[z, z−1]) =
⋂

w∈C∗

e−1
w (Vn,n+k(C))

to be the elements of Vn,n+k(C[z, z−1]) which are pointwise linearly
independent on C∗. In other words, Pn,n+k(C[z, z−1]) is the space of
polynomial maps C∗ → Vn,n+k(C) (see Section 3.5 of [15]).

Let GLn(C[z, z−1]) be the group of all n× n matrices with Laurent
polynomial entries whose determinant is invertible in C[z, z−1] and let
GLc

n(C[z, z−1]) be the subgroup consisting of those matrices whose de-
terminant is a non-zero constant. The main theorem in this paper can
now be stated precisely as follows.

Theorem 9. The flow category of Ã : L̃Gn,n+k(C)→ R is isomorphic
to a flow category on Pn,n+k(C[z, z−1])/GLc

n(C[z, z−1]) induced from
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the gradient flow of a Morse-Bott-Smale function fA : Gn(C∞) → R.
Pn,n+k(C[z, z−1]) is an open dense subset of Vn,n+k(C[z, z−1]) and the
flow category on the orbit space Pn,n+k(C[z, z−1])/GLc

n(C[z, z−1]) is in-
duced via the following R-equivariant fiber bundle.

GLc
n(C[z, z−1])/GLn(C) Pn,n+k(C[z, z−1])/GLn(C)

Pn,n+k(C[z, z−1])/GLc
n(C[z, z−1])

-

?

π

The function fA : Gn,n+k(C[z, z−1]) → R is the direct limit of a sys-
tem of Morse-Bott-Smale functions defined on finite dimensional Grass-
mann manifolds consisting of n-planes inside the (n+k)-product of the
finite dimensional complex vector space of Laurent polynomials whose
degrees are bounded by some integer j ∈ Z+.

For each j ∈ Z+ define C[z, z−1]j to be the collection of all Laurent
polynomials of the form

a−jz
−j + a−j+1z

−j+1 + · · ·+ aj−1z
j−1 + ajz

j.

We have a smooth action

GLn(C)× Vn,n+k(C[z, z−1]j)→ Vn,n+k(C[z, z−1]j)

given by matrix multiplication on the left by an element of GLn(C)
(see for instance [10] p. 193-4 or [9] p. 94-5) and the quotient space is

Vn,n+k(C[z, z−1]j)/GLn(C) = Gn,n+k(C[z, z−1]j) ≈ Gn,(n+k)(2j+1)(C)

the Grassmann manifold of n-planes in C[z, z−1]n+k
j . Taking a direct

limit over j we have the infinite dimensional complex Grassmann man-
ifold

Vn,n+k(C[z, z−1])/GLn(C) = Gn,n+k(C[z, z−1]) ≈ Gn(C∞).

Gn,n+k(C[z, z−1]j) is diffeomorphic to the orbit of the adjoint ac-
tion of the unitary group U(n+k)(2j+1) whose spectrum is (1, . . . , 1) ×
(0, . . . , 0) ∈ Rn×R(n+k)2j+k (see for instance [1] p. 54-55). Choosing a
diagonal matrix in this orbit, x0, we have defined a unique U(n+k)(2j+1)-
equivariant diffeomorphism

φ : Gn,n+k(C[z, z−1])→ U(n+k)(2j+1) · x0.

For every j ∈ Z+ let Mj be the (2j + 1) × (2j + 1) diagonal ma-
trix whose mth diagonal entry is m

√
−1 where −j ≤ m ≤ j (we are
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indexing the entries of Mj by {−j,−j + 1, . . . , j − 1, j}). Let

Aj =




Mj 0
Mj

. . .
0 Mj


 ∈ u((n + k)(2j + 1))

be the skew-Hermitian diagonal matrix with n + k blocks of Mj along
the diagonal. These matrices define Morse-Bott-Smale functions fAj

:
Gn,n+k(C[z, z−1]j) → R given by fAj

(p) =< φ(p), Aj > for all p ∈
Gn,n+k(C[z, z−1]j) where < ·, · > denotes the Killing form .

For every p ∈ Gn,n+k(C[z, z−1]j) the gradient flow line of fAj
through

p, with respect to the pullback under φ of the Killing form, is γp(t) =
Lt(p) where Lt : C[z, z−1]n+k

j → C[z, z−1]n+k
j is the linear map deter-

mined by the matrix exp(−itAj) [12]. This flow lifts to Vn,n+k(C[z, z−1]j)
because exp(−itAj) acts on Vn,n+k(C[z, z−1]j) by matrix multiplication
on the right and GLn(C) acts by matrix multiplication on the left. If
M ∈ Vn,n+k(C[z, z−1]j) has lij(z) ∈ C[z, z−1] in its (i, j) entry, then
the matrix M exp(−itAj) ∈ Vn,n+k(C[z, z−1]j) has lij(e

tz) ∈ C[z, z−1]
as its (i, j) entry. That is, the gradient flow of fAj

is given by com-
posing lij(z) with the map z 7→ etz for all i, j ∈ Z. The function
fA : Gn,n+k(C[z, z−1]) → R referred to in Theorem 9 is defined by
fA = limj fAj

. The gradient flow lines of fA are given by composing
each Laurent polynomial entry of an element of Vn,n+k(C[z, z−1]) with
the map z 7→ etz.

Claim 10. Pn,n+k(C[z, z−1]) is an open dense subset of Vn,n+k(C[z, z−1]).

Proof:
M ∈ Vn,n+k(C[z, z−1]) is in Pn,n+k(C[z, z−1]) if and only if for ev-

ery w ∈ C∗ the determinant of at least one n × n minor of M(w) is
non-zero. The determinants of the n × n minors of M are Laurent
polynomials and hence have only finitely many roots. By perturbing
the entries of M slightly we can insure that these

(
n+k

n

)
polynomials do

not have a root in common. This shows that Pn,n+k(C[z, z−1]) is dense
in Vn,n+k(C[z, z−1]). If M ∈ Pn,n+k(C[z, z−1]) then the determinants of
the n × n minors of M do not have a root in common. If we perturb
the entries of M slightly then the determinants of the n× n minors of
the perturbed matrix won’t have a root in common either. This shows
that Pn,n+k(C[z, z−1]) is open in Vn,n+k(C[z, z−1]).

2

GLn(C[z, z−1]) acts on the left of Mn,n+k(C[z, z−1]) by matrix multi-
plication. This action does not restrict to Vn,n+k(C[z, z−1]), but it does
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restrict to Pn,n+k(C[z, z−1]). The proof of the following claim is similar
to that of the preceding.

Claim 11. There exists an action

GLn(C[z, z−1])× Pn,n+k(C[z, z−1])→ Pn,n+k(C[z, z−1])

given by matrix multiplication on the left by an element of GLn(C[z, z−1]).

Note that this action corresponds to Laurent polynomial row operations
on an element of Pn,n+k(C[z, z−1]). That is, by multiplying an element
of Pn,n+k(C[z, z−1]) on the left by an element of GLn(C[z, z−1]) we can
interchange rows, multiply a row by a unit of C[z, z−1], or add a Laurent
polynomial multiple of one row to another.

GLc
n(C[z, z−1]) is the kernel of the homomorphism GLn(C[z, z−1])→

Z which sends a matrix to the degree of its determinant. Hence,
GLc

n(C[z, z−1]) is a normal subgroup of GLn(C[z, z−1]), the quotient
group GLn(C[z, z−1])/GLc

n(C[z, z−1]) = Z, and the restriction

GLc
n(C[z, z−1])× Pn,n+k(C[z, z−1])→ Pn,n+k(C[z, z−1])

of the GLn(C[z, z−1]) action is free and gives the following fiber bundle

GLc
n(C[z, z−1])/GLn(C) Pn,n+k(C[z, z−1])/GLn(C)

Pn,n+k(C[z, z−1])/GLc
n(C[z, z−1]).

-

?

π

The reader should note that GLn(C) is not a normal subgroup of
GLc

n(C[z, z−1]). The following lemma is an immediate consequence of
the fact that the gradient flow of fA : Gn,n+k(C[z, z−1]) → R is given
by composing Laurent polynomials with the map z 7→ etz.

Lemma 12. The gradient flow of fA : Gn,n+k(C[z, z−1])→ R restricts
to a flow on Pn,n+k(C[z, z−1])/GLn(C). This flow descends to a flow
on Pn,n+k(C[z, z−1])/GLc

n(C[z, z−1]) such that π is R-equivariant.

Let Cn,n+k be the flow category on Pn,n+k(C[z, z−1])/GLc
n(C[z, z−1])

induced from the gradient flow of fA : Gn,n+k(C[z, z−1])→ R. Theorem
9 asserts that Cn,n+k is isomorphic to CÃn,n+k

, the flow category of the

action functional Ã : L̃Gn,n+k(C)→ R. Before giving a rigorous proof
of the theorem we give the following heuristic argument.
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Recall that Pn,n+k(C[z, z−1]) is the space of all Laurent polynomial
maps C∗ → Vn,n+k(C). We can define a continuous injective map

Pn,n+k(C[z, z−1])→ LVn,n+k(C)

into the space of all continuous maps S1 → Vn,n+k(C) by restricting an
element of Pn,n+k(C[z, z−1]) to S1. Similarly, GLc

n(C[z, z−1]) maps into
the identity component, L0GLn, of the space of all continuous maps
S1 → GLn(C) and the map

Pn,n+k(C[z, z−1])/GLc
n(C[z, z−1])→ LVn,n+k(C)/L0GLn = L̃Gn,n+k(C)

is continuous, injective, and surjects onto the space of algebraic points

in L̃Gn,n+k(C). This map is R-equivariant with respect to the flow
induced from fA : Gn,n+k(C[z, z−1]) → R on the left and the flow of
the action functional on the right.

If the above map was a homeomorphism onto the space of algebraic
loops, then we would have an induced isomorphism of flow categories

Cn,n+k → CÃn,n+k

by Theorem 6. However, the above map is definitely not a homeo-
morphism onto the space of algebraic loops as can be seen even in
the simple case n = k = 1 studied by Cohen, Jones, and Segal in [5].
For example one can find sequences in Pn,n+k(C[z, z−1])/GLc

n(C[z, z−1])
that do not converge but whose images do converge to algebraic loops.
Even though the above map is not a homeomorphism onto its image, it
does induce an isomorphism of flow categories. This is possible because
the morphisms in the flow category are “lines on the manifold” rather
than individual points in the manifold.

Proof of Theorem 9:

Let N =
(

n+k
n

)
. The Plücker embedding P l : Gn,n+k(C) → CP N−1

is defined by sending a plane to the homogeneous coordinates given by
the determinants of the n×n minors of any element of Vn,n+k(C) whose
rows span the plane. We have a similar map

P l : Pn,n+k(C[z, z−1])/GLc
n(C[z, z−1])→ P(C[z, z−1]N)

defined by sending an equivalence class [M ] to the N -tuple of Lau-
rent polynomials (mod C∗) given by the determinants of the n × n
minors of M . This generalized Plücker embedding is well-defined be-
cause multiplying M by an element of GLc

n(C[z, z−1]) can only change
the determinants of the n× n minors of M by an element of C∗.

Lemma 13. P l : Pn,n+k(C[z, z−1])/GLc
n(C[z, z−1])→ P(C[z, z−1]N) is

an embedding.
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Proof:
Assume that the determinants of the n × n minors of M1, M2 ∈

Pn,n+k(C[z, z−1]) are the same up to multiplication by an element of
C∗. Since the standard Plücker embedding Gn,n+k(C) → CP N−1 is
injective, there exists a matrix of functions G(z) = (gij(z)) (i.e. gij :
C∗ → C for all 1 ≤ i, j ≤ n) such that G(w)M1(w) = M2(w) for all
w ∈ C∗. Since M1 ∈ Pn,n+k(C[z, z−1]) there exists a minor of M1,
say (M1)I , whose determinant is not the zero polynomial. For every
1 ≤ j ≤ n the jth row of G gives a system of n equations and n
unknowns in g1j, g2j, . . . , gnj

(gj1, gj2, . . . , gjn)(M1)I = (lj1, lj2, . . . , ljn)

where lj1, lj2, . . . , ljn are the entries in the jth row of the minor (M2)I .
If we multiply both sides of the above equations by a high enough
power of z to clear the negative powers of the Laurent polynomials,
then we have an equivalent system of equations in the sense that the
functions gij which solve one system also solve the other. This new
system of equations is a linear system of n equations and n unknowns
over the field of rational functions. Moreover, since the determinant
of (M1)I is not zero this new system of equations has a solution over
the field of rational functions. That is, the functions gij are rational
functions that can only have poles at zero. So as functions the gij are
Laurent polynomials. Hence, G ∈ GLc

n(C[z, z−1]). This shows that
P l : Pn,n+k(C[z, z−1])/GLc

n(C[z, z−1])→ P(C[z, z−1]N) is injective.
It’s clear that P l : Pn,n+k(C[z, z−1])/GLc

n(C[z, z−1])→ P(C[z, z−1]N)
is continuous. To see that the inverse map is continuous it suffices to
show that the composite

Pn,n+k(C[z, z−1])
π→ Pn,n+k(C[z, z−1])/GLc

n(C[z, z−1])
P l→

P l(Pn,n+k(C[z, z−1])/GLc
n(C[z, z−1])) ⊆ P(C[z, z−1]N)

maps open sets to open sets. But every point M ∈ Pn,n+k(C[z, z−1])
has an open neighborhood given by perturbing the coefficients of the
entries of M which maps onto an open neighborhood of P l◦π(M). That
is, P l ◦ π(M) ∈ P(C[z, z−1]N) has homogeneous coordinates which are
linear functions in the coefficients of the Laurent polynomial entries of
M and since a linear function of several variables is an open map P l◦π
is an open map.

2

The map P l : Pn,n+k(C[z, z−1])/GLc
n(C[z, z−1]) → P(C[z, z−1]N ) is

R-equivariant, i.e. both the flow on Pn,n+k(C[z, z−1])/GLc
n(C[z, z−1])
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described in Lemma 12 and the flow of fA : P(C[z, z−1]N) → R re-
stricted to the image of the generalized Plücker embedding are given
by composing Laurent polynomials with the map z 7→ etz. Hence
by Theorem 6 the flow category on Pn,n+k(C[z, z−1])/GLc

n(C[z, z−1]) is
isomorphic to the subcategory of fA : P(C[z, z−1]N )→ R consisting of
those critical points and flow lines which lie in the image of P l. Note
that the object space of Cn,n+k is homeomorphic to Z×Gn,n+k(C).

Every point [M ] ∈ Pn,n+k(C[z, z−1])/GLc
n(C[z, z−1]) determines a

unique algebraic point in L̃Gn,n+k(C) as follows. Recall that a point

in L̃Gn,n+k(C) is given by a map S1 → Gn,n+k(C) together with an ex-
tension D2 → Gn,n+k(C) well defined up to homotopy rel S1. First we

label the critical submanifold in L̃Gn,n+k(C)alg consisting of constant
extensions of constant loops to D2 by C0. The other critical subman-
ifolds are then labeled in relation to C0, i.e. the critical submanifold
on sheet j ∈ Z of the universal cover is labeled Cj. The preceding
lemma implies that every element of Pn,n+k(C[z, z−1])/GLc

n(C[z, z−1])
determines a unique holomorphic map CP 1 → Gn,n+k(C) and hence a
gradient flow line of the action functional from a constant loop at some
point a ∈ Gn,n+k(C) to a constant loop at some b ∈ Gn,n+k(C). We lift

this flow to a map R→ L̃Gn,n+k(C) beginning at a ∈ Cj = Gn,n+k(C)
and then evaluate at zero where j is the unique element of Z such that
multiplying each entry in the N -tuple P l([M ]) by z−j gives a collec-
tion of elements of C[z] with no common roots in C. This defines a
continuous bijective map

in,n+k : Pn,n+k(C[z, z−1])/GLc
n(C[z, z−1])→ L̃Gn,n+k(C)alg.

It’s clear from the definition that this map is R-equivariant with
respect to the induced flow from fA : Gn,n+k(C[z, z−1]) → R on the
left and the gradient flow of the action functional on the right, i.e. on
both sides the flow is given by z 7→ etz. Therefore by Theorem 6 in,n+k

induces a continuous bijective functor

In,n+k : Cn,n+k → CÃn,n+k
.

It is clear that In,n+k : Ob(Cn,n+k)→ Ob(CÃn,n+k
) is a homeomorphism

because in,n+k is continuous and bijective and the object space of Cn,n+k

has compact components (i.e. each component is Gn,n+k(C)).
The Plücker embedding P l : Gn,n+k(C) → CP N−1 also induces an

embedding LP l : LGn,n+k(C)→ LCP N−1 and since π1(LGn,n+k(C)) =
π1(LCP N−1) = Z this induces an embedding

L̃P l : L̃Gn,n+k(C))→ ˜LCP N−1.
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Chasing through the definitions of the maps involved one sees that we
have the following R-equivariant commutative diagram.

Pn,n+k(C[z, z−1])/GLc
n(C[z, z−1]) L̃Gn,n+k(C)alg

P1,N(C[z, z−1])/C∗ ˜LCP N−1
alg

-
in,n+k

?

P l

?

L̃P l

-
i1,N

The preceding diagram induces the following commutative diagram of
flow categories by Theorem 6.

Cn,n+k CÃn,n+k

C1,N CÃ1,N

?

-
In,n+k

?
-

I1,N

where the vertical arrows are inclusion functors induced by the Plücker
embeddings in the preceding diagram.

One of the results announced in [5] is that the functor I1,N : C1,N →
CÃ1,N

is an isomorphism of categories. In particular, for any a, b ∈
Ob(Cn,n+k) we have a homeomorphism

I1,N : Mor(a, b)C1,N
→ Mor(i1,N (a), i1,N(b))CÃ1,N

where Mor(a, b)C1,N
is a morphism space in the flow category of the

function fA : P(C[z, z−1]N)→ R and Mor(i1,N(a), i1,N(b))CÃ1,N
is a mor-

phism space in the flow category of the action functional on ˜LCP N−1.

In,n+k : Mor(a, b)Cn,n+k
→ Mor(in,n+k(a), in,n+k(b))CÃn,n+k

is simply a restriction of I1,N and hence is a homeomorphism. Therefore
In,n+k : Cn,n+k → CÃn,n+k

is an isomorphism of flow categories.

2

One should note that our definition of Mor(a, b) as the space of piece-
wise flow lines on the manifold immediately gives the result of Cohen,
Jones, and Segal announced in [5]. We have seen that

i1,N : P1,N(C[z, z−1])/C∗ → ˜LCP N−1
alg
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is a continuous bijective map whose inverse is discontinuous. However,
restricted to the space of critical submanifolds this map is a homeomor-
phism. Hence by Theorem 6 there is an induced continuous bijective
functor

I1,N : C1,N → CÃ1,N

that is a homeomorphism on the object spaces.
To see that the inverse map on the morphism spaces is contin-

uous fix any two critical points a, b ∈ Ob(CÃ1,N
) and assume lj ∈

Mor(a, b)CÃ1,N
is a sequence of piecewise gradient flow lines converg-

ing to l ∈ Mor(a, b)CÃ1,N
. If I−1

1,N (lj) did not converge to I−1
1,N(l), then

there would be a sequence of points pj ∈ I−1
1,N(lj) that stayed some

finite distance from I−1
1,N(l). But by assumption I1,N(pj) approaches

l and since l is compact there is a subsequence of I1,N(pj) approach-
ing some point I1,N(p) ∈ l. Hence to show that I−1

1,N(lj) converges to

I−1
1,N(l) it suffices to show that for every I1,N(p) ∈ l and every sequence

of points I1,N(pj) ∈ lj converging to I1,N(p), pj converges to p.
Pick any I1,N(p) ∈ l and assume that I1,N(pj) ∈ lj is a sequence

converging to I1,N(p). Applying the projection map

π : ˜LCP N−1 → LCP N−1

we have a sequence π(I1,N(pj)) converging to π(I1,N(p)). Since all these
points are algebraic there exist holomorphic maps

hj : CP 1 → CP N−1

and

h : CP 1 → CP N−1

such that hj(e
is) = π(I1,N(pj)) and h(eis) = π(I1,N(p)). These holo-

morphic maps are specific parameterizations for segments of the piece-
wise gradient flow lines π(lj) and π(l) and because of the way the
parameterizations were chosen hj approaches h on S1 (the image of
eis) as j → ∞. In other words, h is a “bubble” in the limit of hj

where the bubbling can only occur at 0 and ∞ because the π(lj) are
all piecewise gradient flow lines of the action functional. Since these
maps are holomorphic hj(z) = (p1

j(z) : · · · : pN
j (z)) for every j ∈ Z+

and h(z) = (p1(z) : · · · : pN(z)) where the entries are polynomials with
no root in common in C. As elements of P(C[z, z−1]N )

(p1
j(z) : · · · : pN

j (z))→ zm(p1(z) : · · · : pN(z))

as j →∞ where m ∈ Z is determined by what sort of bubbling occurs.
After multiplying by an appropriate power of z, determined by what
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sheet in the universal cover I1,N(p) lies, we have pj and p. Hence pj → p
as j →∞.

4. Floer Homotopy Type and Floer Cohomology

Definition 14. Fixing any critical submanifold C0 ⊆ Ob(CfA
) we de-

fine the Floer homotopy type of fA : Gn,n+k(C[z, z−1]) → R (following
[3]) to be

lim
−→
B∈I

{(BCfA
|C0
B )−νC}C∈IB

where

I = {B a component of Ob(CfA
)|W (C0, B) is a manifold}

and

IB = {C a component of Ob(CfA
)|C0 ≤ C and W (C, B) is a manifold}

and νC is the normal bundle of

BCfA
|C0
B

νC
↪→ BCfA

|CB.

The maps in the above systems are all inclusion maps.

Lemma 15. P ∈ Gn,n+k(C[z, z−1]) = Vn,n+k(C[z, z−1])/GLn(C) is a
critical point of fA : Gn,n+k(C[z, z−1]) → R if and only if there exists
some M ∈ Vn,n+k(C[z, z−1]) lying above P such that the ith row of
M consists of entries of the form aijz

mi for some aij ∈ C and some
mi ∈ Z.

Proof:
The critical points of fA : Gn,n+k(C[z, z−1])→ R are the fixed points

of the gradient flow. Recall that this gradient flow is given by com-
posing the Laurent polynomial entries of M ∈ Vn,n+k(C[z, z−1]) with
the function z 7→ etz. Assume that M ∈ Vn,n+k(C[z, z−1]) is of the
form described above. Then composing the entries of M with z 7→ etz
multiplies the ith row by emit. Hence, the equivalence class does not
change in Vn,n+k(C[z, z−1])/GLn(C) = Gn,n+k(C[z, z−1]).

Now assume that P ∈ Gn,n+k(C[z, z−1]) is fixed point. Choose M ∈
Vn,n+k(C[z, z−1]) lying above P and in reduced row echelon form. Since
the rows of M(etz) span the same plane as the rows of M(z) the first
row of M(etz) is a multiple of the first row of M(z). Thus the first row
of M(z) must consist of entries of the form a1jz

m1 for some m1 ∈ Z.
By repeating the argument for rows 2, 3, . . . , n we see that every row
of M must consist of entries of the form aijz

mi for some mi ∈ Z.

2
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The preceding lemma shows that the critical submanifolds of fA :
Gn,n+k(C[z, z−1])→ R are indexed by n-tuples of integers (m1, . . . , mn).
We will denote these critical submanifolds by C(m1,... ,mn). If m1 = m2 =
· · · = mn, then C(m1,... ,mn) = Gn,n+k(C). In general, C(m1,... ,mn) is a
product of Grassmann manifolds, e.g. if l of the integers (m1, . . . , mn)
are the same, then C(m1 ,... ,mn) will have Gl,n+k(C) as a factor. From
this point on we will fix C0 = C(0,0,... ,0).

Theorem 16. The Floer homotopy type of fA : Gn,n+k(C[z, z−1])→ R
has

Gn(C∞)← Gn(C∞)−(n+k)γn ← Gn(C∞)−2(n+k)γn ← · · ·
as a cofinal system where γn denotes the tautological n-plane bundle
over Gn(C∞).

Proof:
Let Cj = C(j,j,... ,j) for all j ∈ Z. Then for j < 0 we have BCfA

|C0
Cj

∼=
W (C0, Cj) = Gn,n+k(C[z, z−1]{j,j+1,... ,0}) where C[z, z−1]{j,j+1,... ,0} de-
notes the collection of all Laurent polynomials of the form

ajz
j + aj+1z

j+1 + · · ·+ a−1z
−1 + a0.

The normal bundle of the embedding BCfA
|C0
Cj

↪→ BCfA
|Cm
Cj

is m(n+k)γn

for all m ∈ Z+. Hence {(BCfA
|C0
Cj

)−νC}C∈ICj
has

Gn(C[z, z−1]{j,j+1,... ,0})← Gn(C[z, z−1]{j,j+1,... ,0})−(n+k)γn ← · · ·
as a cofinal system.

Taking a direct limit j → −∞ we see that

Gn(C∞)← Gn(C∞)−(n+k)γn ← Gn(C∞)−2(n+k)γn ← · · ·
is a cofinal system of the Floer homotopy type.

2

If we apply H∗ to the above pro-spectrum and use the Thom Iso-
morphism Theorem we get the following direct system.

H∗(Gn(C∞))
∪cn+k

n→ H∗+2n(n+k)(Gn(C∞))
∪cn+k

n→ · · ·
The direct limit of this system is

H∗(Gn(C∞))[c−(n+k)
n ].

The reader should note that the above cohomology groups are graded
over Z and periodic with period 2(n + k) where n + k is the minimal
Chern number of Gn,n+k(C). This is consistent with the grading on
Floer’s cohomology groups.
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For the case n = 1 Theorem 9 implies that the flow category CfA
is

a compactification of the flow category of the action functional on the
universal cover of LCP k. We define the Floer homotopy type of the
action functional to be the Floer homotopy type of CfA

. Looking at
the proof of Theorem 16 we see that the Floer homotopy type of the
action functional on the universal cover of LCP k is

CP∞ ← (CP∞)−(1+k)γ1 ← (CP∞)−2(1+k)γ1 ← · · ·
where γ1 denotes the Hopf line bundle over CP∞.

The Floer cohomology ring of CP k is well-known [14].

Theorem 17. The Floer cohomology ring of CP k is

HF ∗(CP k) =
Z[p, q, q−1]

< p1+k = q, q−1q = 1 >

where p has degree 2.

Note that HF ∗(CP k) is isomorphic to

H∗(CP∞)[(c1)
−(1+k)] ∼= Z[c1, c

−(1+k)
1 ]

One reason that HF ∗(CP k) is usually written as in the above theorem
is to stress the 2N -periodicity of the Floer cohomology groups where
N = 1 + k is the minimal Chern number of CP k. Another reason is
that it exhibits the action of π2(CP k) on HF ∗(CP k).

π2(CP k) = π1(LCP k) is the group of deck transformations of L̃CP
k
.

This action induces an action on the Floer chain complex. A ∈ π2(CP k)
sends a critical point of Maslov index µ to a critical point of Maslov
index µ+2c1(A) (see [14] section 10.1). If A is a generator of π2(CP k),
then the induced action of A on the Floer cohomology ring is multipli-
cation by either q or q−1 in Theorem 17.

The group of deck transformations π2(CP k) sends critical points to
critical points and gradient flow lines to gradient flow lines. Thus there
is an induced action of π2(CP k) on the flow category of the action
functional on the universal cover of LCP k. This action has the effect
of reindexing the critical submanifolds in Definition 14, but other than
that it does not change the Floer homotopy type. In particular, we see
that the Floer homotopy type of the action functional on the universal
cover of LCP k is independent of the basepoint chosen in Definition 14.
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