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THE FLOER HOMOTOPY TYPE OF HEIGHT
FUNCTIONS ON COMPLEX GRASSMANN

MANIFOLDS

DAVID E. HURTUBISE

Abstract. A family of Floer functions on the infinite dimensional
complex Grassmann manifold is defined by taking direct limits of
height functions on adjoint orbits of unitary groups. The Floer
cohomology of a generic function in the family is computed using
the Schubert calculus. The Floer homotopy type of this function
is computed and the Floer cohomology which was computed al-
gebraically is recovered from the Floer homotopy type. Certain
non-generic elements of this family of Floer functions were shown
to be related to the symplectic action functional on the universal
cover of the loop space of a finite dimensional complex Grassmann
manifold in the author’s preprint The Floer homotopy type of com-
plex Grassmann manifolds.

1. Introduction

Recently Cohen, Jones, and Segal have been trying to develop an
underlying homotopy theory for Floer homology [6] [8]. According to
their theory a Floer function, i.e. a function that can be used to define
Floer homology groups [9] [10] [11], should in many cases also give
rise to an inverse system of spectra (a pro-spectrum). They call this
inverse system of spectra the “Floer homotopy type”, and the Floer
homology groups should be recoverable from the Floer homotopy type.
The analogous situation in Morse theory is that a Morse function gives
rise to a CW complex whose homology agrees with the Morse homology
[14], [16].

In [8] Cohen, Jones, and Segal considered the example of a Floer
function f : CP∞ → R. This function is a modification, due to Segal,
of the Morse function on CP k defined in [14]. Segal’s idea was to use
the function which appears in [14] extended to CP∞ but with the basis

1991 Mathematics Subject Classification. Primary: 55P15 Secondary: 58B05,
58F09 .

Research supported by an NSF graduate fellowship.

c©1997 American Mathematical Society

1



2 DAVID E. HURTUBISE

elements of C∞ indexed over Z instead of Z+. The result is a function
on CP∞ whose critical points all have infinite index but whose relative
indices are all finite. The Floer cohomology of f : CP∞ → R has the
structure of a module over H∗(CP∞). This Floer cohomology module
is H∗(CP∞)[c−1

1 ] where c1 is the Chern class of the Hopf line bundle
γ1 over CP∞. The Floer homotopy type of CP∞ → R is

CP∞ ← (CP∞)−γ1 ← (CP∞)−2γ1 ← · · ·

and the Floer cohomology module can be recovered from this pro-
spectrum using the Thom Isomorphism Theorem as the direct limit of
the following:

H∗(CP∞)
∪c1→ H∗+2(CP∞)

∪c1→ H∗+4(CP∞)
∪c1→ · · · .

In this paper I define a family of Floer functions on Gn(C∞), the
infinite dimensional complex Grassmann manifold. These Floer func-
tions are direct limits of well known height functions defined on certain
adjoint orbits of Un+k diffeomorphic to Gn,n+k(C) [4]. An explicit for-
mula for the gradient flow lines of these height functions with respect
to the Killing form is derived and the functions are shown to satisfy
the Morse-Bott-Smale transversality condition (see Theorems 3 and
5). For a generic height function on Gn,n+k(C) I show that the unsta-
ble manifolds of the function are the Schubert cells of Gn,n+k(C) (see
Theorem 8).

One function fA : Gn(C∞) → R in the family is an extension of
the function studied by Cohen, Jones, and Segal in [8]. This function
has critical points whose Morse indices are all infinite; however, the
relative index between any two points is finite. Using the relative index
(see Definition 10) the Floer chain complex of fA : Gn(C∞) → R
is defined. There is a natural filtration of the Floer chain complex
such that the cohomology of each term in the filtration is isomorphic
(after reindexing) to H∗(Gn(C∞)). This isomorphism induces a direct
system of chain complexes and the cohomology of the direct limit is
computed as a module over H∗(Gn(C∞)) using the Schubert calculus.
This cohomology module is the localization of H∗(Gn(C∞)) at cn, the
nth Chern class of the tautological n-plane bundle γn over Gn(C∞), i.e.

HF ∗(Gn(C∞)) ≈ H∗(Gn(C∞))[c−1
n ].

Each term in the filtered Floer chain complex has the cohomology of
Gn(C∞)−jγn for some j ∈ Z+. Moreover, the maps in the direct system
of chain complexes coming from the filtration are multiplication by the
Euler class of γn. This algebraic information is reflected in the Floer
homotopy type of fA. The Floer homotopy type of fA : Gn(C∞) → R
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has

Gn(C∞)← Gn(C∞)−γn ← Gn(C∞)−2γn ← · · ·
as a cofinal system where the maps are induced by certain bundle
inclusions. The Floer cohomology module can be recovered from this
pro-spectrum using the Thom Isomorphism Theorem as the direct limit
of the following:

H∗(Gn(C∞))
∪cn→ H∗+2n(Gn(C∞))

∪cn→ H∗+4n(Gn(C∞))
∪cn→ · · · .

The Floer homotopy type of fA : Gn(C∞) → R is constructed from
its flow category [7] [13]. The flow category of fA is a topological cate-
gory whose objects are the critical points of fA and whose morphisms
are the unparameterized piecewise gradient flow lines of fA. The flow
category of fA : Gn(C∞)→ R is particularly easy to work with in part
because its morphism spaces are compact. The flow category associ-
ated to a certain non-generic element of the family of Floer functions
defined in this paper is related to the flow category of the symplectic
action functional on the universal cover of the loop space of Gn,n+k(C)
via a group action and an R-equivariant fiber bundle. For the case
n = 1 the group action is trivial and the flow category of this non-
generic function compactifies the flow category of the action functional
on the universal cover of the loop space of CP∞. Details concerning
the relationship between the flow categories defined in this paper and
the flow category of the symplectic action functional can be found in
[13].

2. Height functions on adjoint orbits

Let G be a compact connected semi-simple Lie group with Lie algebra
g. Let x0 ∈ g and consider G/Gx0 ≈ G · x0 ⊆ g where · denotes the
adjoint action. For any A ∈ g define fA : G · x0 → R by the formula
fA(x) =< x, A > where < −,− > denotes the Killing form. For the
proof of the following theorem see [4], [12], and [3].

Theorem 1. fA : G · x0 → R is a Morse-Bott function for any A ∈ g.
For a generic A, i.e. when A lies in an orbit of maximal dimension,
fA is a Morse function.

The following claim can be established by elementary means (see for
instance [18] or [5]).

Claim 2.

1. For all x ∈ G·x0, the tangent space to the orbit at x is Tx(G·x0) =
[g, x].
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2. For all x ∈ G·x0, the normal space to the orbit at x is Nx(G·x0) =
{W ∈ g|[W, x] = 0}.

3. For any x ∈ G · x0 and for all X ∈ Tx(G · x0) the differential of
fA is given by DXfA =< X, A >.

4. xc ∈ G · x0 is a critical point of fA if and only if [A, xc] = 0.

If G is a matrix group, e.g. Un, On, or Spn, then the above Morse-
Bott functions are compatible with an increase in dimension, e.g. Un ↪→
Un+1, and so they can be used to define Morse-Bott functions on various
orbits which arise as direct limits of matrix groups. Since this paper
is mainly concerned with complex Grassmann manifolds we will now
restrict to the case where G is a unitary group. For any n, k ∈ N we
choose

x0 = i

(
1n×n 0

0 0k×k

)
∈ u(n + k)

and we see that Gn,n+k(C), the complex Grassmann manifold consisting
of n-planes in Cn+k, is diffeomorphic to the orbit Un+k · x0 ⊆ u(n + k)
since the action of Un+k on both spaces is transitive with stabilizer
Un × Uk, i.e. both spaces are diffeomorphic to Un+k/Un × Uk. From
now on we will identify Gn,n+k(C) with Un+k ·x0 ⊆ u(n+k) by choosing
the unique equivariant diffeomorphism which sends x0 to Cn ⊆ Cn+k.
This amounts to choosing a specific embedding of Gn,n+k(C) into the
(n+k)2 dimensional Euclidean space u(n+k) where the inner product
is the Killing form.

Theorem 3. Let p ∈ Gn,n+k(C) be any plane. For any matrix A ∈
u(n + k) the gradient flow line of the Morse-Bott function fA through
p, with respect to the pullback of the Killing form, is γp(t) = Lt(p)
where Lt : Cn+k → Cn+k is the linear map determined by the matrix
exp(−itA) ∈ GLn+k(C) using column orientation for Cn+k.

Note that if we use row orientation for Cn+k then the gradient flow is
given by the linear map determined by the transpose of exp(−itA).

We will use the above theorem to prove that fA satisfies the Morse-
Bott-Smale transversality condition. This transversality condition can
be stated as follows (see for instance [2]).

Definition 4. A function satisfies the Morse-Bott-Smale transversal-
ity condition if and only if for any two critical submanifolds M and N
the stable manifold of N intersects the unstable manifold of m trans-
versely for all m ∈M , i.e. W u(m) t W s(N) for all m ∈M .

Theorem 5. For any A ∈ u(n + k) the function fA : Gn,n+k(C) → R
satisfies the Morse-Bott-Smale transversality condition with respect to
the pullback of the Killing form.
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For the proof of Theorem 3 we will need the following elementary
facts.

Claim 6.

1. For all A ∈ u(n + k) and for all x ∈ Un+k · x0 the projection of A
onto Tx(Un+k · x0) is −[[A, x], x].

2. The gradient vector field of fA : Un+k · x0 → R with respect to the
Killing form is (∇fA)x = −[[A, x], x].

Proof:
Let A ∈ u(n + k) and x ∈ Un+k · x0. The projection of A onto

Tx(Un+k ·x0) is the unique vector X ∈ Tx(Un+k ·x0) such that A−X ∈
Nx(Un+k · x0). That is [A − X, x] = 0 (see Claim 2) or equivalently,
[A, x] = [X, x]. So the first part of the claim is simply the statement
that [A, x] = −[[[A, x], x], x]; i.e. [−, x] is an almost complex structure
on Un+k · x0 (see for instance [1] p. 57).

To prove the second part of the claim recall that (∇fA)x is the unique
element of Tx(Un+k · x0) which satisfies < (∇fA)x, X >= DXfA for all
X ∈ Tx(Un+k · x0). So we have by Claim 2 < (∇fA)x, X >=< A, X >
for all X ∈ Tx(Un+k · x0). That is, (∇fA)x is the projection of A onto
the tangent space Tx(Un+k · x0).

2

Lemma 7. Let η : G ×M → M be a smooth action of a Lie group
G on a smooth manifold M . Let m ∈ M and let ηm : G → M be the
obvious map induced from η. Then Te(Gm) ⊆ ker dηm(e) where e ∈ G
is the identity and Gm is the stabilizer of m. Moreover, Te(Gg·m) =
Adg(Te(Gm)) for all g ∈ G.

Proof:
Let γ(t) be a path in Gm with γ(0) = e. Then ηm(γ(t)) is constant

and so d
dt
|t=0 ηm(γ(t)) = dηm(e)(γ′(0)) = 0. This shows that Te(Gm) ⊆

ker dηm(e). To prove the second statement one need merely recall that
Gg·m = gGmg−1 and then consider paths of the form gσ(t)g−1 where
σ(t) ∈ Gm and σ(0) = e.

2

Proof of Theorem 3:

Let Cn ⊆ Cn+k be the vector subspace spanned by the first n
standard basis vectors of Cn+k. Pick any unitary matrix U ∈ Un+k

such that U(Cn) = p and let x = Ux0U
−1 ∈ u(n + k). The path

σx(t) = exp(−t[A, x]) · x ∈ u(n + k) satisfies σ′
x(0) = −[[A, x], x],

the gradient vector of fA at x (see p. 115 of [18]). Notice that un-
der the diffeomorphism Un+k · x0 ≈ Gn,n+k(C) this path goes to the
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path σ̃x(t) = exp(−t[A, x])(p). Because of this and the fact that
γp(t + t0) = γp̃(t) for some p̃ ∈ Gn,n+k(C) it suffices to show that
γ′

p(0) = σ̃′
x(0).

Let η : GLn+k(C) × Gn,n+k(C) → Gn,n+k(C) be the smooth action
of GLn+k(C) on Gn,n+k(C) given by treating an element of GLn+k(C)
as a linear map and evaluating it on a plane and let ηp : GLn+k(C)→
Gn,n+k(C) be induced from η. In this notation γp(t) = ηp(exp(−itA))
and σ̃x(t) = ηp(exp(−t[A, x])). By the chain rule we have γ′

p(0) =
dηp(In+k)(−iA) and σ̃′

x(0) = dηp(In+k)(−[A, x]) where In+k is the iden-
tity matrix of size (n + k) × (n + k). Thus we will be done once we
show that dηp(In+k)(−iA + [A, x]) = 0.

To show that −iA + [A, x] ∈ ker dηp(In+k) we apply the previous
lemma and show that,

−iA + [A, x] ∈ TIn+k
(GLn+k(C)p) = U(TIn+k

(GLn+k(C)Cn))U−1.

If we use column orientation for Cn+k, then the stabilizer of Cn ∈
Gn,n+k(C) consists of those elements of GLn+k(C) whose lower left k×n

block is zero, and since GLn+k(C) is an open subset of C(n+k)2 the
tangent space at In+k of the stabilizer of Cn consists of those matrices
in the tangent space whose lower left k × n block is zero. Therefore
all we need to do is to write −iA + [A, x] as such a matrix conjugated
with U .

−iA + [A, x] = −iA + [A, Ux0U
−1]

= −iA + U [U−1AU, x0]U
−1

= U(−iU−1AU + [U−1AU, x0])U
−1

Letting Y = U−1AU one easily sees that −iY + [Y, x0] does have its
lower left k × n block identically zero.

2

Proof of Theorem 5:

Let A ∈ u(n + k). Since the Killing form is invariant under the
adjoint action and every skew-Hermitian matrix can be conjugated
by a unitary matrix to a diagonal matrix we may assume that A
is diagonal. Moreover, by reordering the basis elements if necessary
we may assume that the eigenvalues of A (divided by i) are increas-
ing. The matrix exp(−itA) is then a diagonal matrix whose diago-
nal entries are all of the form eaj t where aj ∈ R and aj ≤ aj+1 for
all 1 ≤ j ≤ n + k. Let Vn,n+k(C) be the complex Stiefel manifold.
Then π : Vn,n+k(C) → Gn,n+k(C) is a smooth fiber bundle. If we
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think of an element of Vn,n+k(C) as an (n + k) × n matrix of com-
plex numbers, then exp(−itA) acts on Vn,n+k(C) by multiplication on
the left. This gives a flow on Vn,n+k(C) which commutes with the
projection π since GLn(C) acts on Vn,n+k(C) by multiplication on the
right (using column orientation for Cn+k) to give the quotient space
Vn,n+k(C)/GLn(C) ≈ Gn,n+k(C).

Let M and N be critical submanifolds of Gn,n+k(C) such that there
exists a flow from M to N . Let m ∈ M and choose n ∈ N such
that there is a flow from m to n. Let m̃, ñ ∈ Vn,n+k be the matri-
ces in reduced column echelon form such that π(m̃) = m, π(ñ) = n
and the first non-zero entry in each column of m and n is 1. Since
exp(−itA) is diagonal with its eigenvalues increasing, it is easy to see
that π−1(W u(m)) contains all matrices in Vn,n+k(C) whose topmost
non-zero entries in column j agree with all the non-zero entries in col-
umn j of m̃ for j = 1, . . . , n. Similarly, π−1(W s(n)) contains all matri-
ces in Vn,n+k(C) whose bottommost non-zero entries in column j agree
with all the non-zero entries in column j of ñ for j = 1, . . . , n. Hence,
π−1(W u(m)) t π−1(W s(n)) and since π : Vn,n+k(C) → Gn,n+k(C) is
locally trivial we have W u(m) t W s(n).

2

3. The Floer cohomology of fA : Gn(C[z, z−1])→ R

Consider C[z, z−1], the ring of Laurent polynomials. As a vector
space C[z, z−1] is isomorphic to C∞ and so the Grassmann manifold
Gn(C[z, z−1]), which consists of all n-dimensional planes in C[z, z−1],
is homeomorphic to Gn(C∞). In order to put a smooth structure on
Gn(C[z, z−1]) we write it as a direct limit as follows.

Let Λ denote the set of all finite subsets of Z. That is, Λ = {λ ∈
P(Z)| |λ| <∞}. Λ is a directed set whose partial ordering is given by
inclusion ⊆. For any α ∈ Λ let C[z, z−1]α ⊆ C[z, z−1] be the vec-
tor space spanned by {zj}j∈α. Let α, β ∈ Λ with α ⊆ β. Then
C[z, z−1]α ⊆ C[z, z−1]β induces an inclusion jβ

α : Gn(C[z, z−1]α) ↪→
Gn(C[z, z−1]β) which sends an n-plane in C[z, z−1]α to itself viewed as
a plane in C[z, z−1]β. Thus {Gn(C[z, z−1]α), jβ

α}α,β∈Λ is a direct sys-
tem of smooth manifolds whose direct limit is Gn(C[z, z−1]). This de-
scribes the smooth structure on Gn(C[z, z−1]). Note that Gn(C[z, z−1])
is a smooth manifold modeled on the space ⊕∞

j=−∞C. In particular

Gn(C[z, z−1]) is not a Banach manifold.
We can also use the indexing set Λ to define direct systems of unitary

groups and their Lie algebras. Fix any λ ∈ Λ and let U(λ) denote the
unitary group of C[z, z−1]λ. Notice that the indexing set for the matrix
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entries is λ. This gives for all α, β ∈ Λ with α ≤ β an inclusion
U(α) ⊆ U(β) given by (ars) 7→ (brs) where,

brs =





ars if r, s ∈ α
0 if r or s 6∈ α and r 6= s
1 if r or s 6∈ α and r = s.

In terms of maps this inclusion sends a unitary map Uα ∈ U(α) to
the unitary map Uβ ∈ U(β) which acts on C[z, z−1]α ⊆ C[z, z−1]β the
same way Uα acts on C[z, z−1]α and which fixes C[z, z−1]β\C[z, z−1]α.
Similarly for any λ ∈ Λ we define the Lie algebra of skew-Hermitian
matrices u(λ) to be the associated Lie algebra where the matrix entries
are indexed by λ.

If for every λ ∈ Λ we choose a skew-Hermitian matrix Aλ ∈ u(λ) such
that jβ

α(Aα) = Aβ for every α, β ∈ Λ, then we can define functions
fAλ

(x) =< x, Aλ > such that fAβ
◦ jβ

α = fAα. The functions fAλ

are all smooth and hence in the limit define a smooth function fA :
Gn(C[z, z−1]) → R. Since the Killing form is compatible with the
inclusions jβ

α the gradient flow lines of fAα get mapped to gradient flow
lines of fAβ

under jβ
α and so it makes sense to talk about the gradient

flow lines of fA.
We now choose a set of generic skew-Hermitian matrices Aλ ∈ u(λ)

and compute the Floer cohomology of the function fA : Gn(C[z, z−1])→
R. A matrix Aλ ∈ u(λ) is generic if and only if it has distinct eigen-
values. By Theorem 1, fAλ

will have discrete critical points in this
case. For the sake of exposition we will from now on limit ourselves to
indexing sets λ ∈ Λ of the form

λ = {m1, m1 + 1, m1 + 2, . . . , m2 − 1, m2}

for some m1, m2 ∈ Z with m1 < m2. For every such λ ∈ Λ we let
Aλ ∈ u(λ) be the skew-Hermitian matrix whose mth diagonal entry
is −im for every m ∈ λ and all its other entries are zero. We define
fA = lim fAλ

. Part 4 of Claim 2 implies that the critical points of
fAλ

are the diagonal matrices in the orbit. Since conjugation by a
unitary matrix does not change the eigenvalues, the critical points of
fAλ

all have exactly n square roots of minus one along the diagonal
and all other entries zero. We denote these critical points by xσ where
σ = (r1, . . . , rn) is an n-tuple of integers with rj ∈ λ for all j = 1, . . . , n
and r1 < r2 < · · · < rn. xσ is the matrix with i in its (rj, rj) entry
for all j = 1, . . . , n and 0 in all its other entries. (Recall that we are
indexing the entries of the matrices in u(λ) by λ.) The corresponding
point of Gn(C[z, z−1]) will be denoted by pσ.
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We now describe the unstable manifolds W u(pσ) of fAλ
. Given any

Schubert symbol σ = (r1, . . . , rn) we recall (see [15] p. 74-75) that the
associated Schubert cell e(σ) ⊆ Gn(C[z, z−1]λ) is defined to be the set of
all planes p ∈ Gn(C[z, z−1]λ) such that dim (p∩C[z, z−1]{r1,r1+1,... ,rj}) =
j and dim (p∩C[z, z−1]{r1,r1+1,... ,rj−1}) = j−1 for all j = 1, . . . , n. The
following theorem relates the unstable manifolds of fAλ

to the Schubert
cells of Gn(C[z, z−1]λ).

Theorem 8. For any Schubert symbol σ = (r1, . . . , rn),

W u(pσ) = e(σ).

Proof:
Let σ = (r1, . . . , rn) be any Schubert symbol and let p ∈ e(σ).

We must show that for any open neighborhood U ∈ Gn(C[z, z−1]λ)
containing pσ, there exists T < 0 such that for all t < T we have γp(t) =
exp(−itA)(p) ∈ U . Since p ∈ e(σ) we can pick a basis v1, . . . , vn of p
such that for j = 1, . . . , n the vector vj has 1 in the rjth entry and 0
in all entries below rj. The vectors,

er1t exp(−itA)(v1), . . . , ernt exp(−itA)(vn)

span the plane exp(−itA)(p). Note that for j = 1, . . . , n the entries of
the vector erj t exp(−itA)(vj) are as follows.

m th entry of erjt exp(−itA)(vj) =





ze(rj−m)t some z ∈ C if m < rj

1 if m = rj

0 if m > rj

If we consider γ̃p(t) = (er1t exp(−itA)(v1), . . . , ernt exp(−itA)(vn))
as a path in Vn(C[z, z−1]λ) then we have π(γ̃p(t)) = γp(t) for all t ∈ R.
Since (er1 , . . . , ern) ∈ π−1(U) where π−1(U) is open in Vn(C[z, z−1]λ)
and limt→−∞ γ̃p(t) = (er1 , . . . , ern) we can choose a T < 0 such that for
all t < T we have γ̃p(t) ∈ π−1(U). But this implies that γp(t) ∈ U for
all t < T .

We have shown that e(σ) ⊆ W u(pσ). Now let p ∈ W u(pσ). Since the
Schubert cells partition Gn(C[z, z−1]λ) there exists a unique a Schubert
symbol σ̃ such that p ∈ e(σ̃) ⊆ W u(pσ̃). But then p ∈ W u(pσ̃). Since
the unstable manifolds are disjoint this says that σ̃ = σ, and so p ∈
e(σ).

2

Recalling that for any critical point pσ the unstable manifold theorem
says that W u(pσ) is an embedded disk whose dimension is equal to the
index of pσ we have the following.
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Corollary 9. The index of pσ in Gn(C[z, z−1]λ) can be computed by
adding up the number of rows of xσ ∈ u(σ) above each i which consist
entirely of zeros and then multiplying by 2.

The preceding corollary shows that the index of a critical point is not
preserved under the inclusions jβ

α : Gn(C[z, z−1]α) → Gn(C[z, z−1]β).
However, the relative index of critical points is preserved under the
inclusion jβ

α : Gn(C[z, z−1]α)→ Gn(C[z, z−1]β) where α is in the cofinal
system consisting of those sets which include all integers between the
smallest and the largest in the set. That is if pσ and pσ̃ are any two
critical points in Gn(C[z, z−1]α) where α = {m1, m1 + 1, . . . , m2} for
some m1, m2 ∈ Z with m1 < m2 then for all β ∈ Λ

index(pσ)− index(pσ̃) = index(jβ
α(pσ))− index(jβ

α(pσ̃)).

This allows us to define a relative index between critical points of fA :
Gn(C[z, z−1])→ R analogous to Floer’s relative index for critical points
of the action functional (see for instance [11] p. 584).

Definition 10. Let pσ, pσ̃ ∈ Gn(C[z, z−1]) be critical points of the
function fA : Gn(C[z, z−1]) → R. Let pσ′ be any critical point of fA

such that pσ′ ≤ pσ and pσ′ ≤ pσ̃. The relative index of pσ and pσ̃ is
defined to be

ind(pσ, pσ̃) = dim W (pσ, pσ′)− dim W (pσ̃, pσ′)

where W (a, b) = W u(a) ∩W s(b) for any two critical points a and b.

We define the Floer chain complex C∗ as follows. Fix any critical
point p0 and for each j ∈ Z let Cj be the free abelian group on the
critical points pσ such that ind(pσ, p0) = j. The Floer chain complex
is then defined to be:

· · · → C2 → C1 → C0 → C−1 → C−2 → · · ·

where the boundary homomorphisms are given on the generators by
counting (with sign) the number of gradient flow lines between two
critical points of relative index 1. In this case all the boundary homo-
morphisms are zero since Cj = 0 for j odd. Note that the Floer chain
complex is independent of the choice of base point up to degree shift.
The homology of this complex is ⊕∞

j=1Z in all even dimensions (positive
and negative) and 0 in all odd dimensions. For the sake of exposition
we will now fix p0 = p(0,1,... ,n−1).

We will now describe the module structure of HF ∗(Gn(C[z, z−1]))
over H∗(Gn(C∞)). The filtration

C[z, z−1]{0,1,...} ⊆ C[z, z−1]{−1,0,... } ⊆ C[z, z−1]{−2,−1,...} · · · ⊆ C[z, z−1]
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induces a filtration of the Floer chain complex C∗ as follows. For each
N ∈ Z+ we have Gn(C[z, z−1]{−N,−N+1,... }) ⊆ Gn(C[z, z−1]) and we let
C∗|−N ⊆ C∗ be the chain complex generated by the critical points which
lie in Gn(C[z, z−1]{−N,−N+1,...}). We define the dual of this filtered
complex to be C∗|−N = Hom (C∗|−N , Z). Note that C∗|−N is the dual of
the Morse complex for fA restricted to Gn(C[z, z−1]{−N,−N+1,... }) but
with the groups shifted down 2Nn dimensions. In particular, H∗(C∗|−N)
is Z in dimension −2Nn and all the groups below dimension −2Nn are
zero.

Definition 11. The Floer cohomology of fA : Gn(C[z, z−1])→ R as a
module over H∗(Gn(C∞)) is defined to be the following direct limit,

HF ∗(Gn(C[z, z−1])) = lim
−→
N

H∗(C∗|−N)

where the maps in the direct system are given by identifying each term
in the limit with the dual of the Morse complex of fA restricted to
Gn(C[z, z−1]{−N,−N+1,...}).

In order to make the isomorphisms in the preceding definition ex-
plicit we define a degree 2n chain homomorphism S1 : C∗ → C∗+2n by
S1(p(r1,... ,rn)) = p(r1+1,... ,rn+1). S1 sends a critical point of relative index
j to a critical point of relative index j +2n, and for all j ∈ Z it induces
an isomorphism

Hj(C∗|−1)
S1→ Hj+2n(C∗|0) ≈ Hj+2n(Gn(C[z, z−1]{−1,0,... })).

For all j ∈ Z we define p∗(r1,... ,rn) ∈ Hom(Cj, Z) to be the homomor-
phism which takes the value 1 on p(r1,... ,rn) ∈ Cj and 0 on all other
critical points. Cj|−N is the free abelian group on all p∗(r1,... ,rn) such

that p(r1,... ,rn) ∈ Gn(C[z, z−1]{−N,−N+1,...}) and ind(p(r1,... ,rn), p0) = j.
S1 : C∗ → C∗+2n induces a degree 2n cochain homomorphism S∗

1 :
C∗ → C∗+2n defined by S∗

1(p
∗
(r1,... ,rn)) = p∗(r1+1,... ,rn+1). For all j ∈ Z, S∗

1

induces an isomorphism

Hj(C∗|−1)
S∗

1→ Hj+2n(C∗|0) ≈ Hj+2n(Gn(C[z, z−1]{−1,0,...})).

Similarly for all N ∈ Z we define a degree 2Nn chain homomorphism
SN : C∗ → C∗+2Nn by SN(p(r1,... ,rn)) = p(r1+N,... ,rn+N) and a degree
2Nn cochain homomorphism S∗

N : C∗ → C∗+2Nn by S∗
N(p∗(r1,... ,rn)) =

p∗(r1+N,... ,rn+N). For all j ∈ Z, SN and S∗
N induce isomorphisms
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Hj(C∗|−N)
SN→ Hj+2Nn(C∗|0) ≈ Hj+2Nn(Gn(C[z, z−1]{−N,−N+1,...}))

Hj(C∗|−N)
S∗

N→ Hj+2Nn(C∗|0) ≈ Hj+2Nn(Gn(C[z, z−1]{−N,−N+1,... })).

Theorem 12. For all N ∈ Z+ the following diagram commutes:

H∗(C∗|−N) H∗(C∗|−(N+1))

H∗+2Nn(Gn(C[z, z−1]{−N,... })) H∗+2(N+1)n(Gn(C[z, z−1]{−(N+1),... }))

-

?

S∗
N

?

S∗
N+1

-∪cn

where cn is the Euler class of γn, the tautological n-plane bundle over
Gn(C∞).

Corollary 13. The Floer cohomology of fA : Gn(C[z, z−1]) → R as a
module over H∗(Gn(C∞)) is

HF ∗(Gn(C[z, z−1])) = lim
−→
N

H∗(C∗|−N) ≈ H∗(Gn(C∞))[c−1
n ]

where cn denotes the Euler class of γn, the tautological n-plane bundle
over Gn(C∞).

Proof of Theorem 12:
Recall from Theorem 8 that for all Schubert symbols σ we have

W u(pσ) = e(σ). This makes the isomorphism H∗(C∗|0) ≈ H∗(Gn(C∞))
very explicit. The isomorphism identifies [p∗(r1,... ,rn)] ∈ H∗(C∗|0) with

the cohomology class in H∗(Gn(C∞)) ≈ Hom(H∗(Gn(C∞)), Z) which
has value 1 on [e(r1, . . . , rn)] ∈ H∗(Gn(C∞)) and is zero on all other ho-
mology classes. From this description we see that the map in question
sends the cohomology class represented by the dual of [e(r1, . . . , rn)] to
the cohomology class represented by the dual of [e(r1 + 1, . . . , rn +1)].
Using the Schubert calculus one sees that this map is cupping with cn

(see for instance [17] Th 2.5 p. 229 and Th 3.0 p. 230).

2
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4. The pro-spectrum associated to CfA

Let X be any compact space and let ξ ∈ K(X). There exists a vector
bundle E → X and a number m ∈ Z+ such that ξ = E − εm where εm

is the trivial bundle of dimension m. We define

Xξ = S−mXE

where XE is the suspension spectrum of the Thom space XE. If X
is a CW complex of finite type, then (following [8] p. 322) for all
m ∈ Z+ we choose vector bundles Em over the m-skeleton X(m) such
that ξ|X(m) = Em − εkm ∈ K(X(m)) for some km ∈ Z+ and such that
for any m1, m2 ∈ Z+ there is a bundle map Em1 ⊕ ε(km2−km1 ) → Em2

covering the inclusion X(m1) → X(m2) which is an isomorphism on
fibers. This gives for all m ∈ Z+ maps

Skm+1−km(X(m))Em → (X(m+1))Em+1

which together with the spaces {Sm+|ξ|−|Em|(X(m))Em} define the Thom
spectrum Xξ. This Thom spectrum is independent of the choices made
up to homotopy.

Now consider the following situation for X a compact topological
space. Let η, ζ and ξ be complex vector bundles over X with η⊕ζ = ξ.
Then the inclusion E(η) ⊆ E(ξ) induces a map Xη → Xξ. Now assume
η, ξ ∈ K(X). Then we get a similar map as follows. Let η = F − εm

and ξ = F ⊕ ζ − εm. (We are still assuming that ζ is a vector bundle.)
By definition we have

Xξ = S−m(XF+ζ) and Xη = S−m(XF)

and so we have an induced map Xη → Xξ. For any vector bundle
E → X and for any N ∈ Z+ we have −(N + 1)E + E = −NE. This
defines a map

X−NE ← X−(N+1)E.

A similar situation holds when X is a CW complex of finite type. (See
[8] p. 320-323 for more details.)

The following theorem shows that the algebraic computations done
in the previous section can be realized geometrically.

Theorem 14. For all N ∈ Z+ the maps

Gn(C∞)−(N+1)γn → Gn(C∞)−Nγn
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induced by −(N + 1)γn + γn = −Nγn make the following diagram
commute

H∗(Gn(C∞)−Nγn) H∗(Gn(C∞)−(N+1)γn)

H∗(C∗|−N) H∗(C∗|−(N+1))

-

? ?
-

where the vertical maps are given by the Thom Isomorphism Theorem.

Proof:
By Theorem 12 the following diagram commutes:

H∗(C∗|−N) H∗(C∗|−(N+1))

H∗+2Nn(Gn(C∞)) H∗+2(N+1)n(Gn(C∞))

-

?

S∗
N

?

S∗
N+1

-∪cn

and it follows from the Thom Isomorphism Theorem that the following
diagram commutes:

H∗(Gn(C∞)−Nγn) H∗(Gn(C∞)−(N+1)γn)

H∗+2Nn(Gn(C∞)) H∗+2(N+1)n(Gn(C∞))

-

? ?
-∪cn

2
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In [6] and [8] Cohen, Jones, and Segal defined the Floer homotopy
type of a function such as fA : Gn(C[z, z−1]) → R which takes into
account the above geometry. The Floer homotopy type is an inverse
system of spectra constructed from the flow category of fA (see [7] and
[13]).

Definition 15. The flow category of fA : Gn(C[z, z−1])→ R, denoted
CfA

, is the topological category whose objects are the critical points of
fA topologized as a subspace of Gn(C[z, z−1]) and whose morphisms are
the unparameterized piecewise gradient flow lines of fA. That is, for
any two critical points a and b Mor(a, b) is defined to be the space of
all continuous curves ω : [fA(b), fA(a)]→ Gn(C[z, z−1]) satisfying,

1. ω(fA(b)) = b
2. ω(fA(a)) = a
3. Away from the critical points of fA the map ω is smooth and

satisfies the following differential equation.

dω

dt
=
∇(fA)

‖∇(fA)‖2

Mor(a, b) is topologized as a subset of the space of all continuous maps
from the closed interval [fA(b), fA(a)] to Gn(C[z, z−1]). This space of
continuous maps is given the compact open topology.

Let a, b ∈ Ob(CfA
) with b ≤ a, i.e. there exists a gradient flow line

of fA beginning at a and ending at b. We will use the notation CfA
|ab

to denote the full subcategory whose objects are the critical points
between a and b. BCfA

|ab denotes the geometric realization of this
restricted category. In [6] Cohen, Jones, and Segal prove the following
theorem.

Theorem 16. Let f : M → R be a Morse function defined on a closed
Riemannian manifold M . Then associated to f is a topological cate-
gory Cf whose objects are the critical points of f and whose space of
morphisms between critical points a and b is the space of piecewise flow
lines, of the gradient flow of f , joining a to b.
(1) If f is a generic Morse function (one whose gradient flow satisfies
the Morse-Smale transversality condition) there is a homeomorphism

BCf ∼= M.

(2) For any Morse function there is a homotopy equivalence

BCf 'M.
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To define the Floer homotopy type of fA : Gn(C[z, z−1])→ R we will
use the following notation. Let

I = {b ∈ Ob(CfA
)|W (p0, b) is a manifold}.

For each b ∈ I let

Ib = {a ∈ Ob(CfA
)|p0 ≤ a and W (a, b) is a manifold}.

Note that for every a ∈ Ib the preceding theorem says that BCfA
|p0

b
∼=

W (p0, b) and BCfA
|ab ∼= W (a, b) and so we have smooth structures de-

fined on BCfA
|p0

b and BCfA
|ab . For each a ∈ Ib let νa be the normal

bundle
BCfA

|p0

b

νa
↪→ BCfA

|ab .
Note that if a1, a2 ∈ Ib with a1 ≤ a2, then νa1 ⊕ η = νa2 where η is the
normal bundle of BCfA

|a1
b ↪→ BCfA

|a2
b restricted to BCfA

|p0

b and so we
have a map

(BCfA
|p0

b )−νa1 ← (BCfA
|p0

b )−νa2

defined. These maps define an inverse system of Thom spaces. The
inverse systems {(BCfA

|p0

b )−νa}a∈Ib
form a direct system as follows. For

any b1, b2 ∈ I we say b1 l b2 if and only if BCfA
|p0

b1
⊆ BCfA

|p0

b2
and

Ib1 ⊆ Ib2 . If b1 l b2 then we have an inclusion map

{(BCfA
|p0

b1
)−νa}a∈Ib1

→ {(BCfA
|p0

b2
)−νa}a∈Ib2

.

Definition 17. The Floer homotopy type of fA : Gn(C[z, z−1])→ R is
defined to be

lim
−→
b∈I

{(BCfA
|p0

b )−νa}a∈Ib
.

The following theorem shows how the above algebraic computation
of the Floer cohomology of fA : Gn(C[z, z−1]) → R is reflected in its
Floer homotopy type.

Theorem 18. The Floer homotopy type of fA : Gn(C[z, z−1]) → R
has the following inverse system of spectra:

Gn(C∞)← Gn(C∞)−γn ← Gn(C∞)−2γn ← · · ·
as a cofinal system where the maps are induced from −(N +1)γn+γn =
−Nγn ∈ K(Gn(C∞)) for all N ∈ Z+.

Proof:
Let pj = p(j,j+1,... ,j+n−1) for all j ∈ Z. Then for j < −n we have

BCfA
|p0
pj
∼= Gn(C[z, z−1]{j,j+1,... ,n−1}). Moreover, the normal bundle of

BCfA
|p0
pj

↪→ BCfA
|pm
pj

is mγn for all m ∈ N. Hence {(BCfA
|p0
pj

)−νa}a∈Ipj

has

Gn(C[z, z−1]{j,j+1,... ,n−1}))← Gn(C[z, z−1]{j,j+1,... ,n−1}))−γn ← · · ·
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as a cofinal system. Taking a direct limit j → −∞ we see that

Gn(C[z, z−1]{...n−2,n−1}))← Gn(C[z, z−1]{...n−2,n−1}))−γn ← · · ·

is a cofinal system of the Floer homotopy type of fA : Gn(C[z, z−1])→
R.

2

Note that the Floer cohomology module computed algebraically in
the previous section can be recovered from the above cofinal system
using the Thom Isomorphism Theorem as the direct limit of the fol-
lowing:

H∗(Gn(C∞))
∪cn→ H∗+2n(Gn(C∞))

∪cn→ H∗+4n(Gn(C∞))
∪cn→ · · ·

Hence the Floer cohomology fA : Gn(C[z, z−1]) → R is recoverable
from its Floer homotopy type.
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