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1. INTRODUCTION

In this note we provide a detailed proof of a “well-known folk the-
orem.” This theorem has been used by many authors who study the
topology of spaces of holomorphic maps [1] [7] [5]. The theorem gives
a description of the space of holomorphic maps from CP! to the com-
plex Grassmann manifold G, ,1x(C) in terms of equivalence classes of
A-matrices M, ,11(C[z]), i.e. n X (n + k) matrices with entries in the
polynomial ring C[z]. The equivalence relation is given by the action
of the topological group G L, (C|z]) consisting of those n x n A-matrices
whose determinant is a non-zero constant. This group acts on the space
of n x (n + k) A-matrices by matrix multiplication on the left.

We will show that the action

GLN(C[Z]) X Mn,n-l-k(c[z]) - n,n-l-k(c[z])
restricts to an action
GLn(Cl2]) X Ponti(Clz]) = Pontr(C[2])

where P, ,,4+1(C[2]) is the space of polynomial maps from C to the Stiefel
manifold V,, ,,+x(C). The quotient space is in bijective correspondence
with the space of holomorphic maps f : CP' — G, ,+x(C).

Hol(CP', G,y i 4(C)) «— P, i4(C[2])/GL,(C[2])

The space of holomorphic maps f : CP' — G, ,(C) of degree
d corresponds to the subspace of P, .1 (C|z])/GL,(C|z]) consisting of
those matrices such that the determinants of the minors are all polyno-
mials of degree at most d (with at least one determinant having degree
d). We will show that when restricted to the space of holomorphic
maps of degree d the above bijection is a homeomorphism.

We should note that the fact that a holomorphic map from CP! to
Gnntk(C) is locally given by a matrix of polynomials follows quickly
from Chow’s Theorem and the GAGA principal [8] [3]. The theo-
rem proved in this note (without reference to Chow’s Theorem or the

GAGA principal) improves the local result given by Chow’s Theorem.
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First, we show that a holomorphic map f : CP' — G, ,.1(C) can be
represented by a single global matrix of polynomials. Second, we show
that the compact open topology on Hol(CP!, G, ,+x(C)) agrees with
the quotient topology on P, ,,1x(C[z])/GL,(C[z]) when one restricts to
elements of degree d.

The author would like to thank Professor W. Fulton for suggesting
the method of proof used in this note.

2. HOLOMORPHIC MAPS AND A-MATRICES

In this section we show that every holomorphic map f : CP! —
Gnntk(C) can be represented by a A\-matrix. That is, for every holo-
morphic map f : CP! — G, ,4x(C) there exists a polynomial map
f:C = V,,.14(C) such that the following diagram commutes:

Vn,n+k ((C)

C —f’ Gn,n—i—k(c)

where CP! = C U .
Let D™ (20) = {[20 : z1] € CP29 # 0} and DT (21) = {[20 : 1] €
CPl‘Zl % O}
CPI = D+(Zo> U D+(21>
On D*(z) we have the chart [z : z1] — 21/20 and on D (z1) we have
[20 : 21] ¥ 20/z1. In terms of affine coordinates z = 21 /29 € C.

Lemma 1. Let v; — CP! be the tautological holomorphic line bun-
dle. Every holomorphic section s of the m-fold tensor product bundle

€™ — CP' is a polynomial of degree < m in the holomorphic chart

on DT (zp).

Proof:

The transition function for 4;®™ from D™ (z) to DT (z1) is multipli-
cation by (z9/2z1)™. If we let z = z1/2¢ and identify D% (z) with C
then since s is holomorphic we have,

and
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On D*(z9) N D*(z) we have

(Zo/zl)mS|D+(zo) = S|D+(Z1)

and hence
z=m Z a2’ = Z bez".
k>0 k>0
Thus,
Z a2’ = Z bz "
k>0 k>0

for all z € C* and so we must have a; = 0 for &k > m.
O

The fact that every holomorphic map f : CP* — G,,,,1(C) can be
represented by a A-matrix follows essentially from the above lemma
and the fact that every such holomorphic map is given by the pull-
backs under f of n + k sections of the tautological n-plane bundle
Vi — Gpntr(C) which generate the fiber at every point. We give these
details first for the case n = 1.

The tautological holomorphic line bundle v; — CP* can be defined
as the line bundle whose total space is CP*\{[0 : --- : 0 : 1]} and
whose projection map is p([zo : -+ ¢ 2zgr1]) = [20 ¢ -+ ¢ 2x) (see for
instance [3] p. 42). We have an atlas on CP* given by the k + 1 open
sets

D*(z) = {[20 : -+ : ][z # O}
for all j =0,...,k and holomorphic charts DT (z;) — C*
(20 0z v (20/24, -+ 12/ %5, 2/ 25) € CF

where the z;/z; = 1 term is omitted. These charts induce trivializations
hj : fyik|D+(Zj) — D+(Zj) xC—C
hi([zo 0+t 21t 2ziy1]) = 241/ %5
for all 7 =0,...,k. We have k + 1 holomorphic sections of v defined
by
sillzo s+ -t z]) =lz0: -t 2kt 2]
forall 7 =0,... k.
Lemma 2. Let f : X — CP* be a continuous map. Then for any
trivialization
h:f*(y)lv —=UxC—C
with x € U C X we have

f(@) = [h(s5(x)) = - = h(si(x))]
where s} is the pull-back of s; along f for all j=0,... k.
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Proof:
If we write f(x) = [fo(x) : -+ : fr(x)], then for any [ =0, .-, k we
have

si(x) = (@, [fo(x) : - fi(x) = fi(2)])
and in the pull-back of the chart h; : 77|p+(.;) — D7 (z;) x C — C we

have
hi(s;(@)) = filz)/f;(x)
Thus
f(z) = [Rj(sp(x)) « - -+ = hi(sp(2))]
for all j =0,... k. For any chart i compatible with i} we have
[h(so(x)) =+ = hlsy(x))] = [Af(s5(x)) = - -+ = hj(sg(2))].

O

Theorem 3. Any holomorphic map f : CP' — CP* can be written as
f(z) = 1folz) -2 ful2)]

for all z € C where fy(z2),..., fu(2) are polynomials.

Proof:
This follows from the preceeding Lemma and Lemma 1. In the state-
ment of the theorem CP' = D (2y) Uoo and z € DT (2) = C.

O

For general n € N we define the canonical n-plane bundle v, —
Gnntk(C) to be the bundle whose total space is

{(p,v)|p € Gppsx(C),v € p}.
We define the dual of this bundle
'VZ = Hom(%n (C)

to be the tautological holomorphic n-plane bundle over G, ,,1(C). The
reader can check that this definition of « agrees with the definition
given above when n =1 (see for instance [11] p. 22).

There are n + k canonical holomorphic sections sq,... ,s,+x of v
defined by

s;(p)[(p,v)] = jth coordinate of v € crk

forall j =1,... ,n+k. These sections generate the fiber of v at every
point of p € G, ,11(C).

The holomorphic coordinate charts on G, 11 (C) are defined as fol-
lows (see for example [4] p. 193). Given an n-plane p € G, ,11(C) we
begin by choosing any point p in the Stiefel manifold V;, ,,4++(C) above
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p. P is an n-tuple of linearly independent vectors in C"** which we
think of as an n x (n + k) matrix of complex numbers.

@11 A2 - Qlp+k
- Q21 A22 - Q2p+tk
b= .

an1 Qp2 - *- Apn+k

We have G, 4x(C) = V,,141(C)/GL,(C) where the action of GL,(C)
is given by matrix multiplication on the left, i.e. p ~ gp for all g €
GL,(C). Since the rows of p are linearly independent there is some
minor, say columns I = (iy,...,i,), whose determinant is non-zero.
By multiplying on the left by the inverse of the minor p; we get a set
of vectors which span the same plane p and whose Ith minor is the
identity matrix. The nk entries in the columns not in the Ith minor of
(pr)~'p are local holomorphic coordinates near p € G, ,,.1(C).

Lemma 4. Let f : X — G, n,4x(C) be a continuous map. Then for
any chart

h:f*(vi)lo —-UxC"—C"

with x € U C X, f(x) C C"** is spanned by the rows of the n x (n+k)
matriz whose columns are h(s;(x)) € C" where s} is the pull-back of s;
along f forallj=1,... ,n+k.

Proof:

Since s3(z) = (v,s;(f(x))) for all j = 1,...,n+ k we need only
show that for any chart ¢ : v%|y — U x C* — C" with f(z) € U the
n x (n+ k) matrix whose columns are ¢(s;(f(z))) € C" has rows which
span f(z) € Gy ntk(C).

A holomorphic chart around f(x) € G, ,+x(C) is given by an nx (n+
k) matrix of holomorphic functions whose rows r1(p), ... ,7.(p) span
the n-plane p € G, ,,+x(C) for every point p in a neighborhood U of
f(z). These row vectors give a basis of the fiber of ,, above every point
p € U and hence induce a trivialization of v,|y, i.e. if (p,v) € Y|v

satisfies
v = Z ajrj (p)
j=1

for some a; € C, then the trivialization v, |y — U xC" — C" is defined
by (p,v) — (a1,...,a,).

A framing of ~*|y = Hom(v,|y, C) is given by the dual row vectors
ri(p),...,r(p) for all p € U. As for 7, |y this induces a trivialization
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of vi|u, i.e. if (p,v*) € vi|v satisfies

vt = Z b7 (p)
j=1

for some b; € C, then the trivialization 7|y — U x C"* — C" is defined
by (p,v*) — (by,...,b,). In this trivialization, the ¢th component of

si(f(z)) € Hom(vy,|f(z), C) is
s;i(f(@)[(p,ri(f(x))] = jth coordinate of 7;(f(z)) € C"*.

Since the lemma holds for this particular trivialization it also holds for
any other compatible trivialization.

|

Theorem 5. For every holomorphic map f : CP' — Gy nik(C) there
exists a polynomial map f : C — V, ,+x(C) such that the following
diagram commutes:

Vn,n+k ((C)

C —f’ Gn,n—i—k(c)

where CP' = C U oo.

Proof:

The theorem follows immediately from the above lemma, Lemma
1, and the fact that every holomorphic n-plane bundle on CP! splits
holomorphically into a direct sum of line bundles.

O

3. THE BLJECTION

Let M, »+(C[2]) be the set of nx (n+k) A-matrices and let G L, (C[z])
be the set of nxn Ad-matrices whose determinant is in C\{0}. GL,,(C[z])
is a topological group that acts on M, ,+,(C|z]) by matrix multiplica-
tion on the left.

GLN(C[Z]) X Mn,n-l-k(c[z]) - n,n-l-k(c[z])

Note that this action corresponds to polynomial row operations on
an element of M, ,x(C[z]). That is, by multiplying an element of
M, n+1(C[2]) on the left by an element of G L, (C[z]) we can interchange
rows, multiply a row by a non-zero constant, or add a polynomial
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multiple of one row to another row. (For additional details see [2]
Chapter 6.)

Let P, ,+x(C[z]) be the subset of M, ,.x(C|z]) consisting of those
matrices whose rows are pointwise linearly independent. That is, those
matrices whose rows are in the Stiefel manifold V,, ,1(C) when evalu-
ated at every z € C. Another way of stating this condition is by requir-
ing that the determinants of the nxn minors of a matrix in P, ,1x(C[z])
cannot all have a root in common. The space P, ,,+(C|z]) can be identi-
fied with the space of polynomial maps from C to V,, ,1x(C). (Compare
with Section 3.5 of [10].)

Claim 6. The action of GL,(C[z]) on M, ,+r(Clz]) restricts to an
action on P, ,+x(Clz]).

GLn(C[2]) X Ponik(Cl2]) — Ponir(Cl2])-

Proof:

Let M € P, ,+1(C[2]) and G € GL,(C[z]). The determinants of the
n x n minors of GM have the same roots as the determinants of the
n x n minors of M since they differ only by a factor of det G € C. This
observation proves the claim since an n X (n+ k) matrix of polynomials
is in P, ,4+x(C[z]) if and only if the determinants of its n x n minors do
not all have a root in common.

O

Theorem 7. The space of holomorphic maps f : CP' — G, ,.1(C)
s in bijective correspondence with the orbit space of the action of
GL,(C[z]) on P, n+x(Clz]).

Hol(CP', Gy n4n(C)) «— Prnii(Clz]) /G L, (C[2])

Proof:

In the previous section we showed that for every holomorphic map f :
CP' — G1x(C) there exists a A-matrix, say P € P, ,,x(C[z]), such
that f(z) = m(P(z)) for all z € C where 7 : V,, ,4£(C) — Gpnii(C)
is the map that sends an n-frame to the plane it spans. In order to
show that this determines a well-defined element of the orbit space we
must show that for any two elements P;, P» € P, ,,+1(C|z]) that satisfy
m(Pi(z)) = m(Py(z)) for all z € C there exists G € GL,(C[z]) such
that GP1 = P2.

Assume that m(Py(z)) = w(P2(z)) for all z € C. Then there exists a
matrix of functions G(z) = (g;;(2)) (i.e. g;; : C— Cforall 1 <i,j <
n) such that G(2)Pi(z) = Pa(z) for all z € C. Since P, € P, ,,+x(Clz])
there exists a minor of Py, say (P;)r, whose determinant is not the zero
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polynomial. For every 1 < j <n the jth row of G gives a system of n
equations and n unknowns in g1, g2;, - - - ; Gnj,

(gjlagj2a cen >gjn)(P1)I = (pj1>Pj2> cee >pjn)

where pj1,pj2, ... , Djn are the entries in the jth row of the minor (P%);.
The above is a linear system of n equations and n unknowns over the
field of rational functions. Moreover, since the determinant of (Py); is
not zero this system of equations has a solution over the field of rational
functions. That is, the functions g;; are rational functions which are
defined for all z € C, i.e. the g;; are polynomials. This shows that
G € GL,(C]z]) since detG(z) # 0 for all z € C. Therefore we have a
well defined map

Hol(CP*, Grntn(C)) — Ponsk(Clz]) /G L (Cl2]).

To show that this map has an inverse we need only show that for
every orbit there exists a A-matrix P in the orbit such that the map
defined by f(z) = w(P(z)) is holomorphic for z € C and extends
continuously to the point at infinity. Then co = [0 : 1] € CP! will
be a removable singularity and we will have a holomorphic map f :
CP' — G k(C) defined which clearly corresponds to the orbit of P.
If we embed G, ,,+x(C) into CPY using the Pliicker embedding, then
the map f : C — G, n4x(C) — CP¥ is given by N + 1 polynomials
and it’s clear that a continuous extension to oo is simply given by the
coefficients of the highest power of z in these N + 1 polynomials. Since
Grnik(C) — CPY is a closed subset this point must be contained in
Gnak(C), and hence we have defined a holomorphic map f : CP' —
Grnntk(C) that satisfies f(z) = 7(P(z)) for all z € C.

|

4. TOPOLOGICAL ISSUES

The space Hol(CP!, G, ,+x(C)) is given the compact-open topol-
ogy. Since G, ,+x(C) is a metric space, the compact-open topology
on Hol(CP!, Gy, n+x(C)) is the same as the topology of compact con-
vergence (see [9] p. 286). Moreover, since CP' is compact a se-
quence of holomorphic maps f; € Hol(CP!, Gy, ,+x(C)) converges to
f € Hol(CP', G nik(C)) if and only if for every ¢ > 0 there exists
J € N such that

sup{d(f;(2), f(2))|z € CP'} <

for all j > J where d denotes the metric on G, ,1x(C). (For more
details see [9] p. 280-283.)
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The space P, ,+k(C|z]) is topologized as a subspace of the vector
space C[2]""*%)and the orbit space P, x(C[z])/GL,(C[z]) is given
the quotient topology. The following lemma gives a good intuitive way
to understand the topology of P, ,,4+1(C)/GL,(C[z]).

Lemma 8. Let G be a topological group and assume that G acts con-
tinuously on a topological space X

GxX—-X

with quotient map m : X — X/G. Then w is an open map and a
sequence of equivalence classes T; € X/G converges to T € X/G as
Jj — 00 if and only if there exists a sequence x; € X and an v € X
such that mw(x;) = z; for allj € N, m(x) =z, and x; — © as j — 0.

Proof:
For proof that 7 is an open map see [6] p. 36. The essential point is
that for any open set U C X

) =g U
geG

Now assume that z; — 2 € X as j — o0o. Since 7 is continuous we
have 7(z;) — m(z) as j — oo. For the other direction assume that
we have a sequence 7; € X/G, a point z € X/G, and an open set U,
containing z,, for each z, € 7'(z) such that 7~'(z;) N U, = 0 for
all @, j. Then 7(U,U,) is an open set containing z but not z; for all
j € N. Therefore z; does not converge to .

O

To show that the bijection defined in the previous section is a home-
omorphism when restricted to maps of a fixed degree, we will re-
duce the problem to one of maps between projective spaces using
the Pliicker embedding. Let N = ("::k) The Pliicker embedding
Pl : G,,k(C) — CPN71is defined by sending a plane to the ho-
mogeneous coordinates given by the determinants of the n x n minors
of any element of V,, ,44(C) whose rows span the plane. We have a
similar map

Pl : Pyt (Cl2]) /GLa(Cl2]) — P(C[2]Y)
defined by sending an equivalence class [M] to the N-tuple of polyno-
mials (mod C*) given by the determinants of the n x n minors of M.
This generalized Pliicker embedding is well-defined because multiply-

ing M by an element of GL,(C[z]) can only change the determinants
of the n x n minors of M by an element of C*.

Lemma 9. Pl: P, ,.1(C[2])/GL,(C[z]) — P(C[z]") is an embedding.
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Proof:

Assume that the determinants of the n x n minors of M, M, €
P, n+1(C[z]) are the same up to multiplication by an element of C*.
Since the standard Pliicker embedding G,,,,.(C) — CPN~! is injec-
tive, there exists a matrix of functions G(z) = (g;;(2)) (i.e. ¢;j : C — C
forall 1 <i,7 <n)such that G(w)M;(w) = My(w) for allw € C. Since
M, € P, ,+1(C[z]) there exists a minor of M, say (M;);, whose deter-
minant is not the zero polynomial. For every 1 < j < n the jth row of
G gives a system of n equations and n unknowns in g1, g2, - - - , Gnj)

(gjlagj2a cen >gjn)(Ml)I = (ljlalj2> cee >ljn)

where [;1,1;9, ... ,lj, are the entries in the jth row of the minor (M,);.
The above system of equations is a linear system of n equations and
n unknowns over the field of rational functions. Moreover, since the
determinant of (Mj); is not zero this system of equations has a solu-
tion over the field of rational functions. Hence the functions g;; are
rational functions that have no poles, i.e. polynomials. Therefore,
G € GL,(Clz]) and Pl is injective.
The following commutative diagram shows that Pl is continuous.

Pn,n-i-k((c[z])

|

Pousk(C[2]) /GLA(C[2]) — P(C[]")

detx---xdet

Clz]

To see that the inverse map is continuous it suffices to show that the

composite
Pn,n—i-k(c[z])

ﬂ\

Ponik(C[2]) /GLA(Cl2]) —2 P(C[2)Y)

maps open sets to open sets in its image.

Every point M € P, ,+x(C[z]) has an open neighborhood given by
perturbing the coefficients of the entries of M by +e which maps onto
an open neighborhood of (Plow)(M). That is, (Plor)(M) € P(C[z]")
has homogeneous coordinates which are linear functions in the coeffi-
cients of the polynomial entries of M. Since a linear function of several
variables is an open map Pl o 7w is an open map.

O
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Theorem 10. The map
¢ HOZ(CP1>Gn,n+k(C)) - n,n-l-k(c[z])/GLn(C[Z])

which sends a holomorphic map to the equivalence class of the \-matrix
P such that f(z) = w(P(z)) for all z € C is continuous. When ¢ is
restricted to maps of a fized degree it is a homeomorphism onto its
1mage.
Proof:
Let N = (":k) The following diagram commutes.
¢
Hol(CP', G4 x(C)) ——= Pansn(C[2])/GLa(C[2])

oPl Pl

Hol(CP*,CPY) P(C[2]™)

Hence by the preceeding lemma it suffices to prove the theorem for the
case n = 1 since the restriction of a continuous map is continuous.

Hol(CP!,CPY) has countably many components. The components
are distinguished by the topological degrees of the maps. So it suffices
to show that a sequence f; € Hol(CP!,CP") of fixed degree d con-
verges to f € Hol(CP',CP") if and only if ¢(f;) — ¢(f) as j — oo.
Suppose that in homogeneous coordinates

fi(2) = 0)(2) i pj(2) : -+ 1) (2))
and

f(2) = (0°(2) :p'(2) s - PN (2)):
Since f; and f are of degree d for all j we may assume that p}(z) and
p°(2) are monic polynomials of degree d for all j. This means that
o(f;) and ¢(f) all lie in a single coordinate chart of P(C[z]"). Hence
o(f;) converges to ¢(f) if and only if for all 0 <4 < N the coefficients
of p(z) converge to the coefficients of p’(z) as j — oc.

Assume that f;(z) converges to f(z) uniformly for all 2 € CP'. This

implies that for every 0 < ¢ < N and for a generic z € C (where

p;(2) # 0 and p°(2) # 0)

lim pg(z) _ PO(Z)

= py(2) - P(2)
Therefore the coefficients of p(z) converge to the coefficients of p’(z)
forall0 <¢ < N.
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Now assume that for all 0 < ¢ < N the coefficients of p;'»(z) converge

to the coefficients of p’(z). We want to show that for every e > 0 there
exists a J such that for all j > J

sup{d(f;(2), f(2))|z € CP'} < ¢

where d(—, —) denotes the metric on CPY. There are several ways of
describing this metric. One way is to take the angle between two lines
in CV*! as the metric. An equivalent choice is to take the Hermitian
inner product of a unit vector in the first line with a unit vector in the
orthogonal complement of the second line. For instance:

YA P (E) - ()P (R)
1(P§(2) = pj(z ) sy I (0(2) : pH(2) - pN ()]

(Here we have assumed that N is odd. If N is even, then embed CPY
in CPN*! by taking the last coordinate to be zero.)

Pick any € > 0. For any closed disk D(r) of radius r the above
expression shows that for all z € D(r) there exists a J; such that
for all j > J; we have d(f;(2), f(2)) < €/2. If r is large then the
polynomials will behave like their highest terms when |z| > r, and
hence it is possible to pick a J; such that for all 7 > J, we have
d(fi(2), f(2)) < €/2 for all |z| > r. Taking J = max{.J;, Jo} we see
that f;(z) converges to f(z) uniformly for all z € CP.

|
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