MULTICOMPLEXES AND SPECTRAL SEQUENCES
DAVID E. HURTUBISE

ABSTRACT. In this note we present some algebraic examples of multicomplexes
whose differentials differ from those in the spectral sequences associated to the
multicomplexes. The motivation for constructing examples showing the algebraic
distinction between a multicomplex and its associated spectral sequence comes from
the author’s work on Morse-Bott homology with A. Banyaga [1].

1. INTRODUCTION

Let R be a principal ideal domain. A first quadrant multicomplex X is a bigraded
R-module {X), ;}p ez, with differentials

di : Xp,q — Xp—i,q—l—i—l for all ¢+ = 0, 1, e
that satisfy
Z did; =0 for all n.

i+j=n
A first quadrant multicomplex such that d; = 0 for all ¢ > 2 is called a double
complex (or a bicomplex). For the basic properties of multicomplexes we refer the
reader to [2] and [5].

An E* first quadrant spectral sequence is a sequence of bigraded R-modules
{EL,}stez, with differentials

.o r
d": Es,t - Es—r,t—l—r—l

such that for all r > k there is a given isomorphism H(E") ~ E"*! (see Section 2).
Every first quadrant multicomplex determines an E° first quadrant spectral sequence.
However, not every first quadrant spectral sequence comes from a multicomplex.

Moreover, the differentials d” in the spectral sequence associated to a first quadrant
multicomplex are in general different from the homomorphisms induced by the dif-
ferentials d; in the multicomplex. (Note that using the term “differential” to describe
the homomorphisms d; in a multicomplex is misleading since there is no guarantee
that (d;)? is zero.) The purpose of this note is to demonstrate this distinction by
presenting explicit algebraic examples of multicomplexes where the differential d” in
the associated spectral sequence is different than the homomorphism induced by d,.
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The motivation for constructing examples that show the distinction between a
multicomplex and its associated spectral sequence comes from the author’s work on
Morse-Bott homology with A. Banyaga and the discovery that the Morse-Bott-Smale
chain complex is in fact a multicomplex. For more details see the introduction to [1].

2. THE SPECTRAL SEQUENCE ASSOCIATED TO A FILTERED CHAIN COMPLEX

In this section we clarify the meaning (and the bigrading) of the isomorphism
H(E") ~ E™ and we recall the definition of the differentials d" : B, —E
in an E* spectral sequence coming from a filtered chain complex. This section follows
Chapter 9 of [6].

An E* spectral sequence consists of a sequence of bigraded modules {E;,} over
a principal ideal domain R for r > k, with differentials d" : Eg, — E_ .. that
satisfy (d")? = 0. If we define

Zsr,t = ker(d": E;t - Eg—r,t—l—r—l)

DT s r . r r
Bs,t - lm(d . Es—l—r,t—r—l—l - Es,t)

then B!, C ZI,, and by definition there is a given isomorphism E{}' ~ Z7,/B!,.

Let (C4, 0) be a filtered chain complex that is bounded below by s = 0. That is,
suppose that we have a filtration

FOC*C"'CFs—IC*CFsC*CFs—I—lC*C"'

where F,C., is a chain subcomplex of C, for all s, i.e. (FsCsyy) C FsCspy—q for all t.
The grading s is called the filtered degree, the grading ¢ is called the complemen-
tary degree, and the sum s + ¢ is called the total degree. The filtration is said to
be convergent if N,F,C, = 0 and U,F,C, = C,. Define

Z;t = {C € FsCs+t| 86 € Fs—rcs—l—t—l}
Zy = {c € F;Cs14| 0c = 0}.

The bigraded R-modules in the spectral sequence associated to the filtration are
defined to be

E;t = Zsr,t /(Zsr—_ll,t—l—l + 8Zsr—|jr1—1,t—r+2)
E;X;t = Z;),Ot /(Z;il,t—l—l + (8Cs+t+1 N FsCs—l—t)) )
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where A + B denotes the free abelian group generated by the elements of A and B,
and the differential d" : E{, — E{_ ., .., is defined by the following diagram.

T 9 T
Zs,t Zs—r,t—l—r—l

| l

r r—1 r—1 dar r r—1 r—1
Zs,t /(Zs—l,t—l—l + aZs—l—r—l,t—r—l—2) Zs—r,t—l—r—l /(Zs—r—l,t—l—r + 8Zs—1,t+1)

The R-module EY, is isomorphic to Z;;l / B;;l via an isomorphism given by the
Noether Isomorphism Theorem.

For a proof of the following theorem see Section 9.1 of [6].

Theorem 1. If the filtration on the chain complex (C.,0) is convergent and bounded
below, then the above spectral sequence converges to the bigraded R-module GH,(C\,0)
associated to the filtration FoH,(Cy,0) = im[H.(FsCy,0) — H.(Cy, 0)]. That is,

E;Xfe R ﬂ Zsr,t /U (Zsr—_ll,t—l—l + 8Z§4:7«1—1,t—r+2) ~ GH.(Cs,0)s4

where GH,(Cy,0)st = FsHy4(Cy, 0)/Fs—1Hs 44 (Cl, 0).

3. THE SPECTRAL SEQUENCE ASSOCIATED TO A MULTICOMPLEX

A first quadrant multicomplex ({ X, }p4ez., {di}icz, ) can be assembled to form a
filtered chain complex ((C'X),,d) by summing along the diagonals. That is, suppose
that we are given a bigraded R-module {X,,}, ez, and homomorphisms

di : Xp,q — Xp—i,q—l—i—l for all ¢+ = 0, 1, e

that satisfy

Z did; =0 for all n.

i+j=n
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Xo,3 Xi3 Xo3 X33
d d \ d d
0 T(ziz\ \%2\ 0

di T dy dy
Xo,z X1,2 . --._.__X2,2 X3,2
do do \do d do

1 >do Sdy
Xo,l X1,1 . --._.__X2,1 X3,1
d d \d d
’ ~, N

d I~ are

XO,O X1 0 X2,0 X3,0

If we define
(CX)n= P Xpa

ptHq=n

and 0, = do®- - -Pd, for all n € Z,, then the above relations imply that 0,009,471 = 0.

(OX); 2~ (CX)y 2= (CX), —2~ (CX)y 2= 0
Moreover, the chain complex ((C'X)., d) has an obvious filtration given by

F(CX)n = P Xpa

p+q=n
p<s

Note that the restriction ¢ < s determines a second filtration on a double complex,
but it does not determine a filtration on a general multicomplex.
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The bigraded module associated to the above filtration is
G((CX)*)s,t = FS(CX)S—l-t/Fs—l(CX)s—I—t N Ast
for all s,t € Z,, and the E' term of the associated spectral sequence is given by
E;,t = Z;,t /(Zg—l,t—l—l + aZg,t+1)
where
Z;,t = {C € FS(CX)s+t| dc e Fs—l(CX)s+t—1}
and
7Yy ={c € Fy(CX)gst| Oc € F(CX)gp1-1} = Fo(CX)sre.

The group Z},/Z)_,,,, is the group of (s + t)-cycles in the quotient chain complex
Fy(CX)./Fs—1(CX),, and the group of (s + t)-boundaries in Fy(CX),/Fs_1(CX), is

aZg,t—l—l /(Zg—1¢+1 A aZg,t—l—l) ~ (Zg—1¢+1 + aZg,t—l—l) /Zg—1¢+1
where the isomorphism is given by the Noether Isomorphism Theorem. Therefore,
E;,t = Z;,t /(Zg—l,t—l—l + aZg,t+1)
Zsl,t/Zg—l,t—l—l
(Zg—1¢+1 + aZg,t—l—l) /291441
Zsl,t/Zg—l,t—l—l
029111 /(Zg—1¢+1 NOZJ 1)

and we see that B}, = Hyy (X, ., do) where (X, ., dg) denotes the chain complex

Q

Q

do do do do do
trT——= Ag3 Xs,2

Xs,(] 0.

Xs,l
The differential d* on the E! term of the spectral sequence is defined by the diagram

1 0 1
Zs,t Zs—l,t

l |

2L (20 4020 10) =2 2L, (20 + 070 101)

and it is natural to ask whether or not there is a connection between the differential
d": E;, — E,_,, in the spectral sequence and the homomorphism d; : X,; — X, 1
in the multicomplex.

It is an easy exercise to show that the relations

dod;y +didg = O
dody +did; +dodg = 0

imply that the homomorphism dy induces a differential d : EI, — EL_|, ie. (d)? =

0. Moreover, one can show that the differential d; coincides with the differential
d': Ej, — E, ,,. Thisis a standard fact for double complexes, and the proof for
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double complexes carries over to multicomplexes (see for instance Section 14 of [3],
or Section 3.2.1 of [4]). Thus, we have the following.

Theorem 2. Let ({X, 4 }pqgez., {di}icz, ) be a first quadrant multicomplex and ((CX)., 0)
the associated assembled chain complex. Then the E' term of the spectral sequence
associated to the filtration of (CX). determined by the restriction p < s is given by
E;t ~ Hopt(Xs i, do) where (X, dy) denotes the following chain comple.

do do do do do

Xs,O 0

Xs,3

Xs,2

Xs,l

Moreover, the d* differential on the E* term of the spectral sequence is induced from
the homomorphism d; in the multicomplez.

4. MULTICOMPLEXES WHERE d" # d,

Theorem 2 should sound familiar to anyone acquainted with double complexes.
However, the examples in this section show that Theorem 2 does not generalize to the
higher differentials in the spectral sequence associated to a multicomplex. In fact, the
pattern suggested by Theorem 2 breaks down when r = 2. That is, the differential d”
in the spectral sequence is not necessarily induced from the homomorphism d, when
r > 2. To paraphrase Section 11 of [2], when r > 2 the differential d” is induced from
d, only on those classes which contain elements = such that d;(x) = 0 for all i < r
“which rarely happens”.

Example 1 (A double complex with d? # 0).

It is well known that the spectral sequence associated to a double complex does
not necessarily degenerate at £2. That is, there is no guarantee that d” = 0 for r > 2.
This first example is a small algebraic example that demonstrates this phenomena.

Consider the following first quadrant double complex

d; dy

0 0 0
ldo ldo ldo
d1 dl
<Xo1 > =—<T11>=——"—(

Lk

0(—1<[L’170><—1<l’270>

where < z,, > denotes the free abelian group generated by z, 4, the groups X, , =0
for p + ¢ > 2, and the homomorphisms dy and d; satisfy the following: do(x11) =
T10, di(211) = zo1, and di(wa0) = z19. The conditions (dg)?* = (d1)? = 0 and
dod; + didg = 0 are satisfied trivially, and the assembled chain complex associated to
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this double complex is as follows.

0—><l'270>04>0

dy dy
S S S

do
0—><l’11>—><l’10>—>0

N N

<Zp1>—>0——=>0

02 (CX), —2— (CX), 2020

The homology H,,((C'X)x, ) of the assembled chain complex is trivial for alln € Z .
because the kernel of 0, is trivial and both z(; and x; o are in the image of 9y = do+d;:

32(552,0) = 10
32(171,1—552,0) = To,1-

However, the E' term of the associated spectral sequence is

dq dq
0 0 0
< ZXg1 > d 0 d 0
0 4 0 4 < T2, >

where E}, = 0 for all s +¢ > 2, and the E? term is isomorphic to the E' term.
Since H,((CX).,0) = 0 for all n € Z,, Theorem 1 implies that the differential d*
in the spectral sequence must be nonzero, even though the homomorphism ds in the
multicomplex is zero, i.e. d? # 0 is not induced from dy = 0.

To compute the differential d* : E3; — Eg, we consider the following diagram

22270 2 Zg,l
2220/(2111“'82%0) —>Zgl/( 12"’62 )

where
2 2
ZZO =< T1,1 — T2,0 >, ZO,l =< g1 >
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and Z] | = Z3 = Z!,, = 0. Since 0y(w11 — 2,0) = To,1, we see that the E® term of
the spectral sequence is trivial, and we have verified Theorem 1 in this example.

There is one more subtle point to note in this example: although Ej; and E3 , are
isomorphic, they have different generators. That is,

1 1 0 0\
Eyo =250 /(Z1,1 + a22,1) ~ < X0 >
whereas
2 2 1 1
E270 — 2270 /(ZLI _I_ 82370) ~ < :L’Ll - $270 > .

This is consistent with the definition of a spectral sequence which states that “there
is a given isomorphism H(E") ~ E™” [6].

Example 2 (A double complex with some d” # 0 for r arbitrarily large).

The preceeding example can be generalized to produce a double complex such that
a differential d" in the associated spectral sequence is nonzero for r arbitrarily large.
To see this pick any r» € Z, with » > 2, and consider the following first quadrant
double complex

0 & 0 = 0 & 0 L S
do do do do do
< Zoyr—1 > <L < Tip-1> 4 0 4 0 4 ce d 0
do do do do do
0 <—d1 < Tip—2 > <d—1 < Tor—2 > 4 0 di . 4 0
do do do do do
do do do ldo do
0 4 4 0 h < Tp_21 > LI Tr—1,1 > DL 0
do do do ldo do
0 L 0 & 0 <> < <>

where the groups X, , = 0 for p + ¢ > r and the homomorphisms dy and d; satisfy
the following for p + ¢ = r: do(xpq) = 2pe-—1 and di(xp4) = xp_1,4. The conditions
(do)? = (d1)? = 0 and dod; + d1dg = 0 are satisfied trivially, and the assembled chain
complex associated to this double complex is as follows.
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0
di
@ &
d do

0—O><l'7«70>—>0

dy dy
S S S

0—><ZL’T 11>—><l’r 10>—>0

NN

S S S S

do
0—><l’1r 1>—><l’1r 2>—>0

0 do < Zor-1>—>(

I I | I
02 (0X), (Cx),_, 2

As in the previous example, the homology n((CX )+, 0) of the assembled chain
complex is trivial for all n € Z, because the kernel of 0, is trivial and all the gener-
ators To,—1,T1,—2, .-, Tr_10 of (CX),_1 are in the image of 9,. The E' term of the
associated spectral sequence has Ej, | = < zo,—1 >, E}y = < 2,0 >, and E}, =0
for all other values of s and t. Moreover, E' ~ E? ~ --- ~ E"!. Once again, Theo-
rem 1 implies that the differential d" must be nonzero (even though d, = 0), and the
diagram

A 9 s
Z,no ZO,T‘—l

| |

0/( 111+8Z§r11 r+2) —>Zgr 1/(Zr11r_|_8Z: 111)

can be used to show that d” is surjective. (Note that Zyg 18 generated by zq,_; —
Topg+ -+ (—1)zp0.)
Example 3 (Multicomplexes with d, # 0 and d' = 0 for all i > 2).

The preceeding examples show that the spectral sequence associated to a multi-
complex with d, = 0 for all 7 > 2 may not degenerate at E? (or even E” where r is
arbitrarily large). These examples can be modified to show that there exist multi-
complexes where d, # 0 for r arbitrarily large but the associated spectral sequences
degenerate at E?.
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We begin with a multicomplex where dy # 0 but its associated spectral sequence
degenerates at E?. Consider the following first quadrant multicomplex

d1 dl

0 0 0
ldo ldo ldo
d1 dl
<Xo1 > <=—<T110><——(

e

0

! <l’170><—1<l’270>

where the groups X,, , = 0 for p+¢ > 2, the homomorphisms dy and d; are the same as
in Example 1, and d2(22,) = x¢1. The homomorphisms d; : X, ;, — X, i1 satisfy
D i izn d;d; = 0 for all n trivially, and the assembled chain complex associated to
this multicomplex is as follows.

0—><l’20>—>

\@\\ )

0—><l’11>—><l’10>—>0

- AN

do
do <l’01>—> —>0

0 -2+ (CX), —2~ (CX), 2020

Referring back to Example 1 we see that the diagram
T a T
Z2,0 Z2—7",7"—1

| |

Zyo [(Zi7 + 071 ) 225, J(Zi2), + 0277

1—rr

shows that d" = 0 for all r > 2 since 02(z11 — 220) = 0, and hence the associated
spectral sequence degenerates at F2.

To generalize this example to produce a multicomplex where d, # 0 for r arbitrar-
ily large but the associated spectral sequence still degenerates at E? we start with
the double complex from Example 2 and add a single homomorphism d, defined by
d,(zr0) = (—1)"x0,—1. Further details are left to the reader.
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Example 4 (A multicomplex with d? # 0, do # 0 and d? # dy).

Consider the following first quadrant multicomplex

0 0
ldo ldo jdo
dq

<[L’01,[L’01><—<[L’11><—0

do do do

\dz\
dy

0 <$10><—<$20,$20>

where the groups X, , = 0 for p + ¢ > 2, and the homomorphisms d; for i = 0, 1,2
satisfy the following.

do(I1,1) = Ti10
d1(fE1,1) = To1
d1(£l?2,0) = T1,0
dl(j2,0) 0
da(Z20) = Toa
dg(l’zo) = 0

The homomorphisms d; : X;,; — Xj— g1 satisfy ;. did; = 0 for all n trivially,
and the assembled chain complex associated to this multicomplex is as follows.

do

O0——0

N\
& @
do
0%<l’2071’20>%
@\ . \
04><[L’11>4><[L’10>4>0
& @ & @
d() d() d() dO
0 0 < Zo,1,T01 > —=0—=0

02 (CX)l 01 0 9o 0
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The homology H,((CX).,0) of the assembled chain complex is trivial for all n € Z,
the E! term of the associated spectral sequence is

dq dq
0 0 0
5 dq dq
< Zo,1,o,1 > 0 0
dq dq -
0 0 < Z20,T2,0 >

where E;t =0 for all s+t > 2, and the E? term is isomorphic to the E' term. The
image of the homomorphism induced by dy does not include the class determined by
zo1. However, the differential d? in the spectral sequence is onto. Therefore, d* is
not the same as the homomorphism induced by ds.

Note that additional examples can be constructed where the homology is nontrivial
by adding more generators. Examples 1, 2, and 4 were constructed to have trivial
homology in order to make it easy to see that d" is surjective. Also, it should be
clear at this point how to construct examples where d" is not induced from d, for
several different values of 7: simply combine the above examples using more (disjoint)
generators.

“We are not
who we are.”

/7 N\

d? ds
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