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The project

Construct a (singular) chain complex analogous to the Morse-
Smale-Witten chain complex for Morse-Bott functions.

Question: Why would anyone want to do this? After all,
we can always perturb a smooth function to get a Morse-Smale
function. Also, a Morse-Bott function determines a filtration, and
hence, a spectral sequence.

Example

If π : E → B is a smooth fiber bundle with fiber F , and f is a
Morse function on B, then f ◦ π is a Morse-Bott function with
critical submanifolds diffeomorphic to F .

F // E
π

��

B
f

// R
In particular, if G is a Lie group acting on M and π : EG→ BG
is the classifying bundle for G, then

M // EG×G M
π

��

BG
f

// R
So, this might be useful for studying equivariant homology:
HG

∗ (M ) = H∗(EG×G M ).

Other Examples: The square of the moment map, product
structures in symplectic Floer homology, quantum cohomology,
etc.



Perturbations

1. If f : M → R is a Morse-Bott function, study the Morse-
Smale-Witten complex as ε→ 0 of

h = f + ε




l∑

j=1

ρjfj


 .

2. If h : M → R is a Morse-Smale function, study the Morse-
Smale-Witten complex of εh : M → R as ε→ 0.



Morse-Bott functions

Definition 1 A smooth function f : M → R on a smooth
manifold M is called a Morse-Bott function if and only if
Cr(f) is a disjoint union of connected submanifolds, and for
each connected submanifold B ⊆ Cr(f) the normal Hessian is
non-degenerate for all p ∈ B.

Lemma 1 (Morse-Bott Lemma) Let f : M → R be a
Morse-Bott function, and let B be a connected component of
the critical set Cr(f). For any p ∈ B there is a local chart of
M around p and a local splitting of the normal bundle of B

ν∗(B) = ν+
∗ (B)⊕ ν−

∗ (B)

identifying a point x ∈ M in its domain to (u, v, w) where
u ∈ B, v ∈ ν+

∗ (B), w ∈ ν−
∗ (B) such that within this chart f

assumes the form

f(x) = f(u, v, w) = f(B) + |v|2 − |w|2.

Note that if p ∈ B, then this implies that

TpM = TpB ⊕ ν+
p (B)⊕ ν−

p (B).

If we let λp = dim ν−
p (B) be the index of a connected critical

submanifold B, b = dim B, and λ∗
p = dim ν+

p (B), then we have
the fundamental relation

m = b + λ∗
p + λp

where m = dim M .



Morse-Bott functions II

For p ∈ Cr(f) the stable manifold W s(p) and the unstable mani-
fold W u(p) are defined the same as they are for a Morse function:

W s(p) = {x ∈M | lim
t→∞

ϕt(x) = p}
W u(p) = {x ∈M | lim

t→−∞
ϕt(x) = p}.

Definition 2 If f : M → R is a Morse-Bott function, then
the stable and unstable manifolds of a critical submanifold B
are defined to be

W s(B) =
⋃

p∈B

W s(p)

W u(B) =
⋃

p∈B

W u(p).

Theorem 1 (Stable/Unstable Manifold Theorem) The
stable and unstable manifolds W s(B) and W u(B) are the sur-
jective images of smooth injective immersions E+ : ν+

∗ (B) →
M and E− : ν−

∗ (B) → M . There are smooth endpoint maps
∂+ : W s(B) → B and ∂− : W u(B) → B given by ∂+(x) =
limt→∞ ϕt(x) and ∂−(x) = limt→−∞ ϕt(x) which when restricted
to a neighborhood of B have the structure of locally trivial fiber
bundles.



Morse-Bott-Smale functions

Definition 3 (Morse-Bott-Smale Transversality) A func-
tion f : M → R is said to satisfy the Morse-Bott-Smale
transversality condition with respect to a given metric on M
if and only if f is Morse-Bott and for any two connected crit-
ical submanifolds B and B′, W u(p) intersects W s(B′) trans-
versely, i.e. W u(p) t W s(B′), for all p ∈ B.

Note: For a given Morse-Bott function f : M → R it may not be
possible to pick a Riemannian metric for which f is Morse-Bott-
Smale.

Lemma 2 Suppose that B is of dimension b and index λB and
that B′ is of dimension b′ and index λB′. Then we have the
following where m = dim M :

dim W u(B) = b + λB

dim W s(B′) = b′ + λ∗
B′ = m− λB′

dim W (B, B′) = λB − λB′ + b (if W (B,B′) 6= ∅).

Note: The dimension of W (B, B′) does not depend on the dimen-
sion of the critical submanifold B′. This fact will be used when
we define the boundary operator in the Morse-Bott-Smale chain
complex.



The general form of a M-B-S complex

Assume that f : M → R is a Morse-Bott-Smale function and
the manifold M , the critical submanifolds, and their negative nor-
mal bundles are all orientable. Let Cp(Bi) be the group of “p-
dimensional chains” in the critical submanifolds of index i. A
Morse-Bott-Smale chain complex is of the form:

. . . ...

· · · C1(B2)
⊕

∂0 //

∂1
&&MMMMMMMMMM

∂2

;;
;;

;;;

��;
;;

;;
;;

;;
;

C0(B2)
∂0 //

∂1
&&MMMMMMMMMM

∂2

;;
;;

;;;

��;
;;

;;
;;

;;
;

0

· · · C2(B1)

⊕
∂0 //

∂1
&&MMMMMMMMMM
C1(B1)

⊕
∂0 //

∂1
&&MMMMMMMMMM
C0(B1)

⊕
∂0 //

∂1
&&MMMMMMMMMM

0

· · · C3(B0)

⊕
∂0 // C2(B0)

⊕
∂0 // C1(B0)

⊕
∂0 // C0(B0)

⊕
∂0 // 0

· · · C3(f)

‖
∂ // C2(f)

‖
∂ // C1(f)

‖
∂ // C0(f)

‖
∂ // 0

where the boundary operator is defined as a sum of homomor-
phisms ∂ = ∂0 ⊕ · · · ⊕ ∂m where ∂j : Cp(Bi) → Cp+j−1(Bi−j).
This type of algebraic structure is known as a multicomplex.

The homomorphism ∂0: For a deRham-type cohomology the-
ory ∂0 = d. For a singular theory ∂0 = (−1)k∂, where ∂ is the
“usual” boundary operator from singular homology.

Ways to define ∂1, . . . , ∂m:

1. deRham version: integration along the fiber.

2. singular versions: fibered product constructions.



The associated spectral sequence

The Morse-Bott chain multicomplex can be written as follows
to resemble a first quadrant spectral sequence.

... ... ... ...

C3(B0)
∂0

��

C3(B1)
∂0

��

∂1oo C3(B2)
∂0

��

∂1oo C3(B3)
∂0

��

∂1oo · · ·

C2(B0)
∂0

��

C2(B1)
∂0

��

∂1oo C2(B2)
∂0

��

∂1oo

∂2VVVVVV

VVV

jjVVVVVVVVVVVV

C2(B3)
∂0

��

∂1oo

∂2VVVVVV

VVV

jjVVVVVVVVVVVV

· · ·

C1(B0)
∂0

��

C1(B1)
∂0

��

∂1oo C1(B2)
∂0

��

∂1oo

∂2VVVVVV

VVV

jjVVVVVVVVVVVV

C1(B3)
∂0

��

∂1oo

∂2VVVVVV

VVV

jjVVVVVVVVVVVV ∂3

ii

· · ·

C0(B0) C0(B1)
∂1oo C0(B2)

∂1oo

∂2VVVVVV

VVV

jjVVVVVVVVVVVV

C0(B3)
∂1oo

∂2VVVVVV

VVV

jjVVVVVVVVVVVV ∂3

ii

· · ·

More precisely, the Morse-Bott chain complex (C∗(f), ∂) is a fil-
tered differential graded Z-module where the (increasing) filtration
is determined by the Morse-Bott index. The associated bigraded
module G(C∗(f)) is given by

G(C∗(f))s,t = FsCs+t(f)/Fs−1Cs+t(f) ≈ Ct(Bs),

and the E1 term of the associated spectral sequence is given by

E1
s,t ≈ Hs+t(FsC∗(f)/Fs−1C∗(f))

where the homology is computed with respect to the boundary
operator on the chain complex FsC∗(f)/Fs−1C∗(f) induced by
∂ = ∂0 ⊕ · · · ⊕ ∂m, i.e. ∂0.



The associated spectral sequence II

Since ∂0 = (−1)k∂, where ∂ is the “usual” boundary operator
from singular homology, the E1 term of the spectral sequence is
given by

E1
s,t ≈ Hs+t(FsC∗(f)/Fs−1C∗(f)) ≈ Ht(Bs)

where Ht(Bs) denotes homology of the chain complex

· · · ∂0 // C3(Bs)
∂0 // C2(Bs)

∂0 // C1(Bs)
∂0 // C0(Bs)

∂0 // 0.

Hence, the E1 term of the spectral sequence is
... ... ... ...

H3(B0) H3(B1)
d1oo H3(B2)

d1oo H3(B3)
d1oo · · ·

H2(B0) H2(B1)
d1oo H2(B2)

d1oo H2(B3)
d1oo · · ·

H1(B0) H1(B1)
d1oo H1(B2)

d1oo H1(B3)
d1oo · · ·

H0(B0) H0(B1)
d1oo H0(B2)

d1oo H0(B3)
d1oo · · ·

where d1 denotes the following connecting homomorphism of the
triple (FsC∗(f), Fs−1C∗(f), Fs−2C∗(f).

Hs+t(FsC∗(f)/Fs−1C∗(f))
d1−→ Hs+t−1(Fs−1C∗(f)/Fs−2C∗(f))

The differentials d0 and d1 in the spectral sequence are induced
from the homomorphisms ∂0 and ∂1 in the multicomplex. How-
ever, the differential dr for r ≥ 2 is, in general, not induced from
the corresponding homomorphism ∂r in the multicomplex [J.M.
Boardman, “Conditionally convergent spectral sequences”].



The Austin–Braam approach (∼1995)
(Modeled on deRham cohomology)

Let Bi be the set of critical points of index i and Ci,j = Ωj(Bi)
the set of j-forms on Bi. Austin and Braam define maps

∂r : Ci,j → Ci+r,j−r+1

for r = 0, 1, 2, . . . ,m which raise the “total degree” i + j by one.

... ... ... ...

Ω3(B0)
∂1 //

∂2
VVVVVV

VVV

**VVVVVVVVVVVV

∂3
))

Ω3(B1)
∂1 //

∂2
VVVVVV

VVV

**VVVVVVVVVVVV

Ω3(B2)
∂1 // Ω3(B3) · · ·

Ω2(B0)

∂0
OO

∂1 //

∂2
VVVVVV

VVV

**VVVVVVVVVVVV

∂3
))

Ω2(B1)

∂0
OO

∂1 //

∂2
VVVVVV

VVV

**VVVVVVVVVVVV

Ω2(B2)

∂0
OO

∂1 // Ω2(B3)

∂0
OO

· · ·

Ω1(B0)

∂0
OO

∂1 //

∂2
VVVVVV

VVV

**VVVVVVVVVVVV

Ω1(B1)

∂0
OO

∂1 //

∂2
VVVVVV

VVV

**VVVVVVVVVVVV

Ω1(B2)

∂0
OO

∂1 // Ω1(B3)

∂0
OO

· · ·

Ω0(B0)

∂0
OO

∂1 // Ω0(B1)

∂0
OO

∂1 // Ω0(B2)

∂0
OO

∂1 // Ω0(B3)

∂0
OO

· · ·

Note: Note that the above diagram is not a double complex be-
cause ∂2

1 6= 0. However, it does determine a multicomplex [J.-P.
Meyer, “Acyclic models for multicomplexes”, Duke Math. J., 45
(1978), no. 1, p. 67–85; MR 0486489 (80b:55012)].)



The Austin–Braam cochain complex

The maps ∂r : Ωj(Bi) → Ωj−r+1(Bi+r) fit together to form a
cochain complex where ∂ = ∂0 ⊕ · · · ⊕ ∂m and

Ck(f) =
k⊕

i=0

Ωk−i(Bi).

Ω0(B3)

Ω0(B2) //

88rrrrrrrrrr

Ω1(B2)

⊕

Ω0(B1) //

88rrrrrrrrrr

Ω1(B1) //

88rrrrrrrrrr

AA��������������������
⊕

Ω2(B1)

⊕

Ω0(B0) //

88rrrrrrrrrr

Ω1(B0) //

88rrrrrrrrrr

AA��������������������
⊕

Ω2(B0) //

88rrrrrrrrrr

AA��������������������

FF

Ω3(B0)

⊕

C0(f) ∂ //

‖

C1(f) ∂ //

‖

C2(f) ∂ //

‖

C3(f) ∂ //

‖

· · ·

Theorem 2 (Austin-Braam) For any j = 0, . . . , m

j∑

l=0

∂j−l∂j = 0.

Hence, ∂2 = 0.

Note: ∂2∂0 + ∂1∂1 + ∂0∂2 = 0. So, ∂2
1 6= 0 in general.

Theorem 3 (Austin-Braam)

H(C∗(f), ∂) ≈ H∗(M ; R)



Compactified moduli spaces

For any two critical submanifolds B and B′ the flow ϕt induces
an R-action on W u(B) ∩W s(B′). Let

M(B, B′) = (W u(B) ∩W s(B′))/R

be the quotient space of gradient flow lines from B to B′.

Theorem 4 (Gluing) Suppose that B, B′, and B′′ are crit-
ical submanifolds such that W u(B) t W s(B′) and W u(B′) t
W s(B′′). In addition, assume that W u(x) t W s(B′′) for all
x ∈ B′. Then for some ε > 0, there is an injective local
diffeomorphism

G :M(B, B′)×B′M(B′, B′′)× (0, ε)→M(B, B′′)

onto an end of M(B, B′′).

Theorem 5 (Compactification) Assume that f : M → R
satisfies the Morse-Bott-Smale transversality condition. For
any two distinct critical submanifolds B and B′ the moduli
space M(B, B′) has a compactification M(B, B′), consisting
of all the piecewise gradient flow lines from B to B′, which is
a compact smooth manifold with corners of dimension λB −
λB′+b−1. Moreover, the beginning and endpoint maps extend
to smooth maps

∂− :M(B, B′)→ B
∂+ :M(B, B′)→ B′,

where ∂− has the structure of a locally trivial fiber bundle.



Integration along the fiber

Let π : E → B be a fiber bundle where B is a closed manifold, a
typical fiber F is a compact oriented d-dimensional manifold with
corners, and π∂ : ∂E → B is also a fiber bundle with fiber ∂F . A
differential form on E may be written locally as

π∗(φ)f(x, t)dti1 ∧ dti2 ∧ · · · ∧ dtir

where φ is a form on B, x are coordinates on B, and the tj are
coordinates on F .

Definition 4 Integration along the fiber

π∗ : Ωj(E) → Ωj−d(B)

is defined by

π∗(π
∗(φ)f(x, t)dt1 ∧ dt2 ∧ · · · ∧ dtd) = φ

∫

F

f(x, t)dt1 ∧ · · · ∧ dtd

π∗(π
∗(φ)f(x, t)dti1 ∧ dti2 ∧ · · · ∧ dtir) = 0 if r < d.

The beginning point map

∂− : M(Bi+r, Bi)→ Bi+r

is such a fiber bundle and we can pullback along the endpoint map

∂+ : M(Bi+r, Bi)→ Bi.

Definition 5 Define ∂r : Ωj(Bi)→ Ωj−r+1(Bi+r) by

∂r(ω) =

{
dω r = 0
(−1)j(∂−)∗(∂

∗
+ω) r 6= 0.



An example of Morse-Bott cohomology

Consider S2 = {(x, y, z) ∈ R3| x2 + y2 + z2 = 1}, and let
f(x, y, z) = z2. Then B0 = E ≈ S1, B1 = ∅, and B2 = {n, s}.

S

z

0

1

1

f

2

2

B0

B2

n

s

R⊕ R

0 0
⊕

Ω0(S1) d //

∂1

88ppppppppppppp

OO

≈
��

Ω1(S1) d //

∂2

@@

⊕

OO

≈
��

0

⊕

OO

≈
��

C0(f) ∂ // C1(f) ∂ // C2(f)∂ // 0

ker d : Ω0(S1)→ Ω1(S1) ≈ constant functions on S1

≈ H0(S2; R)

The map ∂2 : Ω1(S1) → R ⊕ R integrates a 1-form ω over the
components ofM(B2, B0) ≈ S1qS1, which have opposite orien-
tations. So,

∂2(ω) = (−1)(∂−)∗(∂
∗
+ω) = (c,−c)

for some c ∈ R, and H2(C∗(f), ∂) ≈ R2/R ≈ R. If c = 0,
then ω is in the image of d : Ω0(S1) → Ω1(S1), and hence
H1(C∗(f), ∂) ≈ 0.



The Banyaga–Hurtubise approach (∼2007)

Modeled on cubical singular homology. Based on ideas from
Austin and Braam (∼1995), Barraud and Cornea (∼2004), Fukaya
(∼1995), Weber (∼2006) etc.

Step 1: Generalize the notion of singular p-simplexes to allow
maps from spaces other than the standard p-simplex 4p ⊂ Rp+1

or the unit p-cube Ip ⊂ Rp. These generalizations of 4p (or
Ip) are called abstract topological chains, and the corresponding
singular chains are called singular topological chains.

Step 2: Show that the compactified moduli spaces of gradient
flow lines are abstract topological chains, i.e. show that ∂0 is
defined. Show that ∂0 extends to fibered products.

Step 3: Define the set of allowed domains Cp in the Morse-
Bott-Smale chain complex as a collection of fibered products (with
∂0 defined) and show that the allowed domains are all compact
oriented smooth manifolds with corners.

Step 4: Define ∂1, . . . , ∂m using fibered products of compact-
ified moduli spaces of gradient flow lines and the beginning and
endpoint maps. Define ∂ = ∂0⊕· · ·⊕∂m and show that ∂ ◦∂ = 0.

Step 5: Define orientation conventions on the elements of Cp and
corresponding degeneracy relations to identify singular topological
chains that are “essentially” the same. Show that ∂ = ∂0⊕· · ·⊕∂m

is compatible with the degeneracy relations.

Step 6: Show that the homology of the Morse-Bott-Smale chain
complex (C∗(f), ∂∗) is independent of f : M → R.



The singular M-B-S chain complex

Let S∞
p (Bi) be the set of smooth singular Cp-chains in Bi (with re-

spect to the endpoint maps on moduli spaces), and let D∞
p (Bi) ⊆

S∞
p (Bi) be the subgroup of degenerate singular topological chains.

The chain complex (C̃∗(f), ∂):

S∞
0 (B2)

∂0 //

∂1

''NNNNNNNNNNN

∂2

==
==

===

��=
==

==
==

==
=

0

S∞
1 (B1)

⊕
∂0 //

∂1
''NNNNNNNNNNN

S∞
0 (B1)

⊕
∂0 //

∂1
''NNNNNNNNNNN

0

S∞
2 (B0)

⊕
∂0 // S∞

1 (B0)

⊕
∂0 // S∞

0 (B0)

⊕
∂0 // 0

C̃2(f)

‖
∂ // C̃1(f)

‖
∂ // C̃0(f)

‖
∂ // 0

The Morse-Bott-Smale chain complex (C∗(f), ∂):

S∞
0 (B2)/D

∞
0 (B2)

∂0 //

∂1
**VVVVVVVVVVVVVVVVVV

∂2
MMMMMMM

MMMM

&&MMMMMMMMMMMMMMM

0

S∞
1 (B1)/D

∞
1 (B1)

⊕
∂0//

∂1
**VVVVVVVVVVVVVVVVVV

S∞
0 (B1)/D

∞
0 (B1)

⊕
∂0 //

∂1
**VVVVVVVVVVVVVVVVVV

0

S∞
2 (B0)/D

∞
2 (B0)

⊕
∂0 // S∞

1 (B0)/D
∞
1 (B0)

⊕
∂0 // S∞

0 (B0)/D
∞
0 (B0)

⊕
∂0 // 0

C2(f)

‖
∂ // C1(f)

‖
∂ // C0(f)

‖
∂ // 0



Step 1: Generalize the notion of singular p-simplexes to allow
maps from spaces other than the standard p-simplex 4p ⊂ Rp+1

or the unit p-cube Ip ⊂ Rp.

For each integer p ≥ 0 fix a set Cp of topological spaces, and let
Sp be the free abelian group generated by the elements of Cp, i.e.
Sp = Z[Cp]. Set Sp = {0} if p < 0 or Cp = ∅.
Definition 6 A boundary operator on the collection S∗ of groups
{Sp} is a homomorphism ∂p : Sp → Sp−1 such that

1. For p ≥ 1 and P ∈ Cp ⊆ Sp, ∂p(P ) =
∑

k nkPk where
nk = ±1 and Pk ∈ Cp−1 is a subspace of P for all k.

2. ∂p−1 ◦ ∂p : Sp → Sp−2 is zero.

We call (S∗, ∂∗) a chain complex of abstract topological chains.
Elements of Sp are called abstract topological chains of degree
p.

Definition 7 Let B be a topological space and p ∈ Z+. A
singular Cp-space in B is a continuous map σ : P → B
where P ∈ Cp, and the singular Cp-chain group Sp(B) is the
free abelian group generated by the singular Cp-spaces. Define
Sp(B) = {0} if Sp = {0} or B = ∅. Elements of Sp(B) are
called singular topological chains of degree p.

Note: These definitions are quite general. To construct the M-B-S
chain complex we really only need Cp to include the p-dimensional
faces of an N -cube, the compactified moduli spaces of gradient flow
lines of dimension p, and the components of their fibered products
of dimension p.



For p ≥ 1 there is a boundary operator ∂p : Sp(B) → Sp−1(B)
induced from the boundary operator ∂p : Sp → Sp−1. If σ : P →
B is a singular Cp-space in B, then ∂p(σ) is given by the formula

∂p(σ) =
∑

k

nkσ|Pk

where
∂p(P ) =

∑

k

nkPk.

The pair (S∗(B), ∂∗) is called a chain complex of singular topolog-
ical chains in B.

Singular N-cube chains

Pick some large positive integer N and let IN = {(x1, . . . , xN) ∈
RN | 0 ≤ xj ≤ 1, j = 1, . . . , N} denote the unit N -cube. For
every 0 ≤ p ≤ N let Cp be the set consisting of the faces of IN

of dimension p, i.e. subsets of IN where p of the coordinates are
free and the rest of the coordinates are fixed to be either 0 or 1.
For every 0 ≤ p ≤ N let Sp be the free abelian group generated
by the elements of Cp. For P ∈ Cp we define

∂p(P ) =

p∑

j=1

(−1)j
[
P |xj=1 − P |xj=0

]
∈ Sp−1

where xj denotes the jth free coordinate of P .



Singular cubical boundary operator (Massey)

B
¾B1

A
1

I
1 2

I

A2

B2

The chain σ : I2 → B has boundary

∂2(σ) = (−1)[σ ◦ A1 − σ ◦ B1] + [σ ◦ A2 − σ ◦ B2]

where the terms in the sum are all maps with domain I1 = [0, 1].

Topological cubical boundary operator (B–H)

I
2@ =A

1

A2

B2

B1 A
1

A2

B2

¡
¡

+B
1( 1)¡

The chain σ : I2 → B has boundary

∂2(σ) = (−1)[σ|A1 − σ|B1] + [σ|A2 − σ|B2]

and the degeneracy relations identify terms that are “essentially”
the same.



Recovering singular homology (degeneracy relations)

A continuous map σP : P → B from a p-face P of IN into a
topological space B is a singular Cp-space in B. The boundary
operator applied to σP is

∂p(σP ) =

p∑

j=1

(−1)j
[
σP |xj=1 − σP |xj=0

]
∈ Sp−1(B)

where σP |xj=0 denotes the restriction σP : P |xj=0 → B and
σP |xj=1 denotes the restriction σP : P |xj=1 → B.

Definition 8 Let σP and σQ be singular Cp-spaces in B and
let ∂p(Q) =

∑
j njQj ∈ Sp−1. For any map α : P → Q, let

∂p(σQ)◦α denote the formal sum
∑

j nj(σQ ◦α)|α−1(Qj)
. Define

the subgroup Dp(B) ⊆ Sp(B) of degenerate singular N-cube
chains to be the subgroup generated by the following elements.

1. If α is an orientation preserving homeomorphism such that
σQ◦α = σP and ∂p(σQ)◦α = ∂p(σP ), then σP−σQ ∈ Dp(B).

2. If σP does not depend on some free coordinate of P , then
σP ∈ Dp(B).

Theorem 6 The boundary operator for singular N-cube chains
∂p : Sp(B)→ Sp−1(B) descends to a homomorphism

∂p : Sp(B)/Dp(B)→ Sp−1(B)/Dp−1(B),

and
Hp(S∗(B)/D∗(B), ∂∗) ≈ Hp(B; Z)

for all p < N .



Step 2: Show that the compactified moduli spaces of gradient
flow lines are abstract topological chains, i.e. show that ∂0 is
defined. Show that ∂0 extends to fibered products.

Fibered products

Suppose that σ1 : P1 → B is a singular Sp1-space and σ2 : P2 → B
is a singular Sp2-space where (S∗, ∂∗) is a chain complex of abstract
topological chains. The fibered product of σ1 and σ2 is

P1 ×B P2 = {(x1, x2) ∈ P1 × P2| σ1(x1) = σ2(x2)}.

This construction extends linearly to singular topological chains.

Definition 9 The degree of the fibered product P1 ×B P2 is
defined to be p1 +p2− b. The boundary operator applied to the
fibered product is defined to be

∂(P1 ×B P2) = ∂P1 ×B P2 + (−1)p1+bP1 ×B ∂P2

where ∂P1 and ∂P2 denote the boundary operator applied to
the abstract topological chains P1 and P2. If σ1 = 0, then we
define 0×B P2 = 0. Similarly, if σ2 = 0, then P1 ×B 0 = 0.

Lemma 3 The fibered product of two singular topological chains
is an abstract topological chain, i.e. the boundary operator on
fibered products is of degree -1 and satisfies ∂ ◦ ∂ = 0. More-
over, the boundary operator on fibered products is associative,
i.e.

∂((P1 ×B1 P2)×B2 P3) = ∂(P1 ×B1 (P2 ×B2 P3)).



Proof that P1 ×B P2 is an abstract topological chain

The degree of P1 ×B P2 is p1 + p2 − b.

Since ∂ is a boundary operator on P1 and P2, the degree of ∂P1

is p1 − 1 and the degree of ∂P2 is p2 − 1. Hence both ∂P1×B P2

and P1 ×B ∂P2 have degree p1 + p2 − b− 1.

To see that ∂2(P1 ×B P2) = 0 we compute as follows.

∂(∂(P1 ×B P2)) = ∂(∂P1 ×B P2 + (−1)p1+bP1 ×B ∂P2)

= ∂2P1 ×B P2 + (−1)p1−1+b∂P1 ×B ∂P2 +

(−1)p1+b(∂P1 ×B ∂P2 + (−1)p1+bP1 ×B ∂2P2)

= 0.

Associativity
Given the data of a triple

P1
σ11 // B1 P2

σ12oo
σ22 // B2 P3

σ23oo

we can form the iterated fibered product (P1×B1 P2)×B2 P3 using
σ23 and the map σ22◦π2 : P1×B1P2 → B2, where π2 : P1×B1P2 →
P2 denotes projection to the second component. That is, we have
the following diagram.

(P1 ×B1 P2)×B2 P3

π1
���
�
�

π3 //________ P3

σ23
��

P1 ×B1
P2

π1
���
�
�

π2 //_______ P2
σ12

��

σ22 // B2

P1
σ11 // B1



Compactified moduli spaces and ∂0

Definition 10 Let Bi be the set of critical points of index i.
For any j = 1, . . . , i we define the degree ofM(Bi, Bi−j) to be
j + bi − 1 and the boundary operator to be

∂M(Bi, Bi−j) = (−1)i+bi
∑

i−j<n<i

M(Bi, Bn)×BnM(Bn, Bi−j)

where bi = dim Bi and the fibered product is taken over the
beginning and endpoint maps ∂− and ∂+. If Bn = ∅, then
M(Bi, Bn) =M(Bn, Bi−j) = 0.

Lemma 4 The degree and boundary operator forM(Bi, Bi−j)
satisfy the axioms for abstract topological chains, i.e. the
boundary operator on the compactified moduli spaces is of de-
gree −1 and ∂ ◦ ∂ = 0.

Proof: Let d = deg M(Bi, Bn) = i − n + bi − 1. Then ∂(M(Bi, Bn) ×Bn M(Bn, Bi−j))

= ∂M(Bi, Bn) ×Bn M(Bn, Bi−j) + (−1)d+bnM(Bi, Bn) ×Bn ∂M(Bn, Bi−j)

= (−1)i+bi

∑

n<s<i

M(Bi, Bs, Bn, Bi−j) + (−1)i+bi−1
∑

i−j<t<n

M(Bi, Bn, Bt, Bi−j)

Therefore,

∂2M(Bi, Bi−j) = (−1)i+bi

[ ∑

i−j<n<i

(
(−1)i+bi

∑

n<s<i

M(Bi, Bs, Bn, Bi−j)+

(−1)i+bi−1
∑

i−j<t<n

M(Bi, Bn, Bt, Bi−j)

)]

= (−1)i+bi

[
(−1)i+bi

∑

i−j<n<s<i

M(Bi, Bs, Bn, Bi−j)+

(−1)i+bi−1
∑

i−j<t<n<i

M(Bi, Bn, Bt, Bi−j)

]

= 0

2



Step 3: Define the set of allowed domains Cp in the Morse-
Bott-Smale chain complex as a collection of fibered products (with
∂0 defined) and show that the allowed domains are all compact
oriented smooth manifolds with corners.

For any p ≥ 0 let Cp be the set consisting of the faces of IN of
dimension p and the connected components of degree p of fibered
products of the form

Q×Bi1
M(Bi1, Bi2)×Bi2

M(Bi2, Bi3)×Bi3
· · ·×Bin−1

M(Bin−1, Bin)

where m ≥ i1 > i2 > · · · > in ≥ 0, Q is a face of IN of dimension
q ≤ p, σ : Q→ Bi1 is smooth, and the fibered products are taken
with respect to σ and the beginning and endpoint maps.

Theorem 7 The elements of Cp are compact oriented smooth
manifolds with corners, and there is a boundary operator

∂ : Sp → Sp−1

where Sp is the free abelian group generated by the elements
of Cp.

Let S∞
p (Bi) denote the subgroup of the singular Cp-chain group

Sp(Bi) generated by those maps σ : P → Bi that satisfy the
following two conditions:

1. The map σ is smooth.

2. If P ∈ Cp is a connected component of a fibered product,
then σ = ∂+ ◦ π, where π denotes projection onto the last
component of the fibered product.

Define ∂0 : S∞
p (Bi)→ S∞

p−1(Bi) by ∂0 = (−1)p+i∂.



Step 4: Define ∂1, . . . , ∂m using fibered products of compact-
ified moduli spaces of gradient flow lines and the beginning and
endpoint maps. Define ∂ = ∂0⊕· · ·⊕∂m and show that ∂ ◦∂ = 0.

If σ : P → Bi is a singular Cp-space in S∞
p (Bi), then for any

j = 1, . . . , i composing the projection map π2 onto the second
component of P ×Bi

M(Bi, Bi−j) with the endpoint map ∂+ :
M(Bi, Bi−j)→ Bi−j gives a map

P ×Bi
M(Bi, Bi−j)

π2−→M(Bi, Bi−j)
∂+−→ Bi−j .

The next lemma shows that restricting this map to the connected
components of the fibered product P×Bi

M(Bi, Bi−j) and adding
these restrictions (with the sign determined by the orientation
when the dimension of a component is zero) defines an element
∂j(σ) ∈ S∞

p+j−1(Bi−j).

Lemma 5 If σ : P → Bi is a singular Cp-space in S∞
p (Bi),

then for any j = 1, . . . , i adding the components of P ×Bi

M(Bi, Bi−j) (with sign when the dimension of a component is
zero) yields an abstract topological chain of degree p + j − 1.
That is, we can identify

P ×Bi
M(Bi, Bi−j) ∈ Sp+j−1.

Thus, for all j = 1, . . . , i there is an induced homomorphism

∂j : S∞
p (Bi)→ S∞

p+j−1(Bi−j)

which decreases the Morse-Bott degree p + i by 1.



Proposition 1 For every j = 0, . . . , m

j∑

q=0

∂q∂j−q = 0.

Proof: When q = 0 we compute as follows.
∂0(∂j(P )) = ∂0

(
P ×Bi

M(Bi, Bi−j)
)

= (−1)p+i−1
(
∂P ×Bi

M(Bi, Bi−j) + (−1)p+biP ×Bi
∂M(Bi, Bi−j)

)

= (−1)p+i−1∂P ×Bi
M(Bi, Bi−j) +

(−1)2p+2bi+2i−1
∑

i−j<n<i

P ×Bi
M(Bi, Bn)×BnM(Bn, Bi−j)

If 1 ≤ q ≤ j − 1, then

∂q(∂j−q(P )) = P ×Bi
M(Bi, Bi−j+q)×Bi−j+q

M(Bi−j+q, Bi−j)

and if q = j, then

∂j(∂0(P )) = (−1)p+i∂P ×Bi
M(Bi, Bi−j).

Summing these expressions gives the desired result.

2

Corollary 1 The pair (C̃∗(f), ∂) is a chain complex, i.e.
∂ ◦ ∂ = 0.



Step 5: Define orientation conventions on the elements of Cp and
corresponding degeneracy relations to identify singular topological
chains that are “essentially” the same. Show that ∂ = ∂0⊕· · ·⊕∂m

is compatible with the degeneracy relations.

Definition 11 (Degeneracy Relations for the Morse-Bott-Smale Chain Complex)

Let σP , σQ ∈ S∞
p (Bi) be singular Cp-spaces in Bi and let ∂Q =

∑
j njQj ∈ Sp−1. For any

map α : P → Q, let ∂0σQ ◦α denote the formal sum (−1)p+i
∑

j nj(σQ ◦α)|α−1(Qj). Define

the subgroup D∞
p (Bi) ⊆ S∞

p (Bi) of degenerate singular topological chains to be the

subgroup generated by the following elements.

1. If α is an orientation preserving homeomorphism such that σQ ◦α = σP and ∂0σQ ◦
α = ∂0σP , then σP − σQ ∈ D∞

p (Bi).

2. If P is a face of IN and σP does not depend on some free coordinate of P , then

σP ∈ D∞
p (Bi) and ∂j(σP ) ∈ D∞

p+j−1(Bi−j) for all j = 1, . . . , m.

3. If P and Q are connected components of some fibered products and α is an orientation

reversing map such that σQ ◦α = σP and ∂0σQ ◦α = ∂0σP , then σP + σQ ∈ D∞
p (Bi).

4. If Q is a face of IN and R is a connected component of a fibered product

Q ×Bi1
M(Bi1, Bi2) ×Bi2

M(Bi2 , Bi3) ×Bi3
· · · ×Bin−1

M(Bin−1
, Bin)

such that deg R > dim Bin, then σR ∈ D∞
r (Bin) and ∂j(σR) ∈ D∞

r+j−1(Bin−j) for all

j = 0, . . . , m.

5. If
∑

α nασα ∈ S∗(R) is a smooth singular chain in a connected component R of a

fibered product (as in (4)) that represents the fundamental class of R and

(−1)r+in∂0σR −
∑

α

nα∂(σR ◦ σα)

is in the group generated by the elements satisfying one of the above conditions, then

σR −
∑

α

nα(σR ◦ σα) ∈ D∞
r (Bin)

and

∂j

(
σR −

∑

α

nα(σR ◦ σα)

)
∈ D∞

r+j−1(Bin−j)

for all j = 1, . . . , m.



Step 6: Show that the homology of the Morse-Bott-Smale chain
complex (C∗(f), ∂∗) is independent of f : M → R.

Given two Morse-Bott-Smale functions f1, f2 : M → R we pick a
smooth function F21 : M ×R→ R meeting certain transversality
requirements such that

lim
t→−∞

F21(x, t) = f1(x) + 1

lim
t→+∞

F21(x, t) = f2(x)− 1

for all x ∈ M . The compactified moduli spaces of gradient flow
lines of F21 (the time dependent gradient flow lines) are used to
define a chain map (F21)2 : C∗(f1) → C∗(f2), where (C∗(fk), ∂)
is the Morse-Bott chain complex of fk for k = 1, 2.

Next we consider the case where we have four Morse-Bott-Smale
functions fk : M → R where k = 1, 2, 3, 4, and we pick a smooth
function H : M × R × R → R meeting certain transversality
requirements such that

lim
s→−∞

lim
t→−∞

H(x, s, t) = f1(x) + 2

lim
s→+∞

lim
t→−∞

H(x, s, t) = f2(x)

lim
s→−∞

lim
t→+∞

H(x, s, t) = f3(x)

lim
s→+∞

lim
t→+∞

H(x, s, t) = f4(x)− 2

for all x ∈M .
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The compactified moduli spaces of gradient flow lines of H are
used to define a chain homotopy between (F43)2 ◦ (F31)2 and
(F42)2 ◦ (F21)2 where (Flk)2 : C∗(fk) → C∗(fl) is the map de-
fined above for k, l = 1, 2, 3, 4. In homology the map (Fkk)∗ :
H∗(C∗(fk), ∂)→ H∗(C∗(fk), ∂) is the identity for all k, and hence

(F12)∗ ◦ (F21)∗ = (F11)∗ ◦ (F11)∗ = id

(F21)∗ ◦ (F12)∗ = (F22)∗ ◦ (F22)∗ = id.

Therefore,

(F21)∗ : H∗(C∗(f1), ∂)→ H∗(C∗(f2), ∂)

is an isomorphism.

Theorem 8 (Morse-Bott Homology Theorem) The ho-
mology of the Morse-Bott chain complex (C∗(f), ∂) is indepen-
dent of the Morse-Bott-Smale function f : M → R. There-
fore,

H∗(C∗(f), ∂) ≈ H∗(M ; Z).



An example of Morse-Bott homology

Consider M = S2 = {(x, y, z) ∈ R3| x2 + y2 + z2 = 1}, and let
f(x, y, z) = z2. Then B0 ≈ S1, B1 = ∅, and B2 = {n, s}.

S

z

0

1

1

f

2

2

B0

B2

n

s

The degeneracy conditions imply

S∞
0 (B2)/D

∞
0 (B2) ≈< n, s >≈ Z⊕ Z,

and S∞
p (B2)/D

∞
p (B2) = 0 for p > 0.

< n, s > ∂0 //

∂1

++WWWWWWWWWWWWWWWWWWWWWWWWWWW

∂2
NNNNNNNN

NNNN

''NNNNNNNNNNNNNNN

0

0
⊕

∂0 //

∂1
++VVVVVVVVVVVVVVVVVVVVVVVVV 0

⊕
∂0 //

∂1
++VVVVVVVVVVVVVVVVVVVVVVVVV 0

S∞
2 (B0)/D

∞
2 (B0)

⊕
∂0 // S∞

1 (B0)/D
∞
1 (B0)

⊕
∂0 // S∞

0 (B0)/D
∞
0 (B0)

⊕
∂0 // 0

C2(f)

‖
∂ // C1(f)

‖
∂ // C0(f)

‖
∂ // 0

The group S∞
k (B0)/D

∞
k (B0) is non-trivial for all k ≤ N , but

Hk(C∗(f), ∂) = 0 if k > 2 and ∂0 : S∞
3 (B0)/D

∞
3 (B0) →

S∞
2 (B0)/D

∞
2 (B0) maps onto the kernel of the boundary operator

∂0 : S∞
2 (B0)/D

∞
2 (B0) → S∞

1 (B0)/D
∞
1 (B0) because the bottom

row in the above diagram computes the smooth integral singular
homology of B0 ≈ S1.



The moduli spaceM(B2, B0) is a disjoint union of two copies of
S1 with opposite orientations. This moduli space can be viewed
as a subset of the manifold S2 sinceM(B2, B0) =M(B2, B0).

S2n

s

M(B ,B )2 0
@+

n£ M(B ,B )2 0

s£ M(B ,B )2 0B

2

2

B

There is an orientation reversing map α : n ×n M(B2, B0) →
s×sM(B2, B0) such that ∂2(n) ◦ α = ∂2(s). Since ∂0(∂2(n)) =
∂0(∂2(s)) = 0, the degeneracy conditions imply that

∂2(n + s) = ∂2(n) + ∂2(s) = 0 ∈ S1(B0)/D1(B0).

They also imply that ∂2 maps either n or s onto a representative
of the generator of

ker ∂0 : S∞
1 (B0)/D

∞
1 (B0)→ S∞

0 (B0)/D
∞
0 (B0)

im ∂0 : S∞
2 (B0)/D∞

2 (B0)→ S∞
1 (B0)/D∞

1 (B0)
≈ H1(S

1; Z) ≈ Z

depending on the orientation chosen for B0. Therefore,

Hk(C∗(f), ∂) =

{
Z if k = 0, 2
0 otherwise.
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Examples with fibered products

Fibered products of simplicial complexes

Let f : [0, 1]→ [0, 1]× [−1, 1] be given by

f(t) =

{
(t, e−1/t2 sin(π/t)) if t 6= 0
(0, 0) if t = 0

and g : [0, 1]× [0, 1]→ [0, 1]× [−1, 1] be given by g(x, y) = (x, 0).
Then f and g are maps between finite simplicial complexes whose
fibered product [0, 1]×(f,g) [0, 1]× [0, 1] =

{(t, t, 0) ∈ [0, 1]× [0, 1]× [0, 1]| t = 0, 1, 1/2, 1/3, . . .}
is not a finite simplicial complex.
Perturbations and fibered products

A non-transverse
point of intersection

No intersection points
One transverse
point of intersection

Two transverse
points of intersections

If f : P1 → B and g : P2 → B do not meet transversally, and we
perturb f to f̃ : P1 → B so that f̃ and g do meet transversally,
then the fibered product

P1 ×(f̃ ,g) P2

might depend on the perturbation.



Triangulations and fibered products

Having triangulations on two spaces does not immediately induce
a triangulation on the fibered product. In fact, there are simple
diagrams of polyhedra and piecewise linear maps for which the
diagram is not triangulable:

R
g← P

f→ Q

There may not exist triangulations of P , Q, and R with respect
to which both f and g are simplicial. [J.L. Bryant, Triangulation
and general position of PL diagrams, Top. App. 34 (1990),
211-233]

The Banyaga-Hurtubise approach

1. Work in the category of compact smooth manifolds with cor-
ners instead of the category of finite simplicial complexes.

2. They prove that all of the relevant fibered products are com-
pact smooth manifolds with corners.

3. They prove that it is not necessary to perturb the beginning
and endpoint maps to achieve transversality. So, they don’t
have to worry about the fibered products changing under per-
turbations.

4. They don’t have to deal with any issues involving triangu-
lations because their approach allows singular chains whose
domains are spaces more general than a simplex.


